AD-A252 876

UCNRINEREY - TEC

ELECTE
JU\. 161992

Contract # N00014-91-C-0240

May 1992
Revised July 1992

General Electric Company
Corporate Research and Development
P. O. Box 8

Schenectady, NY 12301

This work was supported in part by
Naval Surface Warfare Center (NSWCDD)
under contract #N00014-91-C-0240
with the Office of Naval Research

This document has been approved
for public release and sale; its
d: tribution is unlimited,

92

IWIHIIIIl!"lIIIIUIIIIIIIII"IIH!IN.'.':

Part 1

Chapter 1.0

Chapter 2.0
2.1
22
23

Chapter 3.0
3.1
32

Chapter 4.0
4.1
42

Chapter 5.0
5.1
52

Chapter 6.0
6.1
6.2

Chapter 7.0
71
7.2
73

Chapter 8.0
8.1
8.2

Part 11

Appendix A:
Appendix B:
Appendix C:
Appendix D:
Appendix E:

Table of Contents

CMS-2 Reverse Engineering and
ENCORE/SRE Integration Study

Revised Final Report
CMS-2 Reverse Engineering Technology 1
Technology OVEIVIEWceininiirriiininsinieenininissiresessessessassssessssessessssnssses 1
Automatic Operation, Installation, and SEtup........cccceveeevrvsiinninniiesecccennsennnes 6
AULOMALC OPEIALION...........ceereeerreeressrssasserresissssssessresssasresssnsassssasssstsssssasssessssasssrnsssassasraneres 6
RET Installation 8
System Setup 8
Information EXITaCtiON.ccceiiieniieninneinnennennssscnssnsssessesssssssesstessensssssessssenass 9
User Perspective .. 9
INIEINALSoccnisrriionisinsisssnesssessesmssssnssesstsrsarssssssssssssssssas ssassarentsatsnssrosessassssessensosensssensessenens 9
CommENnt PIOCESSINGueecvucnreriinirinntenserssnisstissessssssssssassssasssssssesssesssesssossens 14
User Perspective 14
Internals 14
SyStem INIEGIALIONceveeeerreererceesseereesseceasaessessesssessassassasenssssessnesssssasssssnsns 15
User Perspective .15
Internals 15
Building the Teamwork/SD Reverse Engineering Database......................... 16
User Perspective ceoter st bt s snesesasston 16
Internals 16
TeamWOrk ENVITONIMENLccccercreeeeierenseernsrassnesseesaessesssssasesassasssesssessessenas 16
INVOCALION covveiririsircieinaionssnsasssnsesnsnsasesassesesssssescsssessssassassesansssssnsansnssssssensnsonsrssssesesssassssss 16
Basic Teamwork Displays..........ccccceeerurernenenenranne 16
GE-SUpPPHiEd EXIENSIONS......c.vcveeerersrrerersenesrsrsensressasssssssessasssssssssnassssosssssssssosssssasssssassonsssess 17
File FOTMALS «...cuciuiiiieerneneneenesecsaenserensensessnessssesssssessssessessessesnesssssssesssssssessens 18
MiAAIE FIESooieiieerrereriresnanresesssssssessesssssasssssessnessassesesessessnssasesssesessssssessssnssesesensessosessses 18
COMMENL FILEScccoeeurerrcernrrnerenesesssnsssssssssesssessnsssssesssssesasssesese 20
ENCORE-SRE Integration Study 21

CMS RET User’s Manual

Introduction to ENCORE Internal Representation
ADL Description of the Ada Internal Representation
Introduction to the ENCORE Symbol Table
SRE/ESL Internal Representation

NOON14.91-C-0240 Final Report - Revised July 1992

CMS-2 Reverse Engineering and
ENCORE/SRE Integration Study

Revised Final Report

This is the final report for the contract N00014-91-C-0240. It is divided into two parts: one
addressing the CMS-2 Reverse Engineering Technology, and the other the ENCORE/SRE
(Software Reengineering Environment") Integration Study.

Part1 CMS-2 Reverse Engineering Technology

Part I presents an overview of the CMS-2 Reverse Engineering Technology (CMS RET)
produced for this contract. It includes a description of the operation of the tool, as well as
the work done, and the portions reused from other projects. Chapter 1.0 gives an overview
of the work done, Chapter 2.0 presents installation information and recommended opera-
tion instructions, Chapters 3.0 through 7.0 provide detailed discussions of the functional
areas involved, and Chapter 8.0 details the formats of two files which are crucial to anyone
customizing or extending CMS RET. Appendix A contains the User Manual for CMS RET.

Chapter 1.0 Technology Overview

The work done for this contract demonstrates that:

* Automated extraction of design information from an existing software system written
in CMS-2 can be used to document that system as-built, and that

*The extracted information can be entered into the database of a commercially avail-
able CASE tool and manipulated via the CASE interface.

The delivered prototype operates on Sun/4 workstations and interfaces to the Cadre Team-
work/SD? and Cadre Teamwork/C Rev CASE tools. (If an interface to another CASE tool
should be required, the Database Generator would be reimplemented. Chapter 8.0 pro-
vides the format of this phase’s input files, so such an effort would be fairly well defined.)
The delivered prototype handles a subset of the dialect of CMS-2 known as CMS-2L. This
subset is detailed in Detailed Design for CMS-2 to Ada Translation.3

1. SRE (Software Reengincering Environment) is a set of reengincering tools being constructed by Com-
puter Command and Control Company, Philadelphia, PA.

2. Teamwork/SD and Teamwork/C Rev are a registered trademarks of Cadre Technologies Inc.
3. Detailed Design for CMS-2 to Ada Translation, January 1992, GE intcnal document.

NO00014-91-C-0240 Final Report - Revised July 1992 1

The key features of the CMS RET system are:

*The interactive visual interface to the extracted information is provided by a commer-
cially available CASE tool.

e Information describing software system design is automatically extracted from source
files and organized in a language independent standard mode.

* A method has been developed which exploits project-specific commenting conven-
tions in order to automatically extract comments to the database.
There are three major vehicles of communication provided by the Teamwork/SD interface:
e Structure charts illustrate the calling relationships between modules. (see Figure 1)
*Module specifications (Mspecs) present a description of each module. (see Figure 2)

eData dictionary entries (DDEs) describe the global variables. (see Figure 3)

In addition the system will answer the following questions:
*Where is this variable referenced?
e Which modules call this one?

IO S 9§ MSMSUC; 1 S ——
Flle Whole_SC View Oraw RAnnetate Print DPI OocCen RET CXREF

s
e ve @ oaw DY

FIGURE 1. Structure Chart generated by CMS RET, displayed by Teamwork/SD

The Structure Chart displays the calling relationships between the modules of the system,
providing a convenient method of traversing the software under examination. It provides
direct access to the Mspecs of the modules displayed, as well a facility for looking up the
call tree of any module displayed.

N00014-91-C-0240 Final Report - Revised July 1992 2

O ISR 0§ MSMSUC:te I R——
Fila_ Whote_M-Spec_Annatate Print RET CXREF
TITLE: MSASC K
[Prnee TERS:
LOCALS:
GLOBALS:
MSMTSIC : gote_in

MTSUC : eata_in
TYPPE_s : dota_in
METIM : data_iraut

X este_sut

MSHFSTOP : eets_aut

aorY:
calls :

called by @
Neader Flle Text:
sxtracted cossents:

3.1.2 SEARCH WAMAGENENT SUCCESSOR PROCEDURE (RSNSUC) -

THE MSASUC PROCEDURE IS ACTIVATED BY ATES TO SCHEDULE mSA
AS ITS SUCCESSOR ENTRANCE FOR THE DEAN REQUESTS.

o) s 111112 ALV OS2

FIGURE 2. Mspec generated by CMS RET, displayed by Teamwork/SD

The Mspec describes the important aspects of a module: its parameters, the names of any
global variables which it references, and comments extracted from its source code. It also
summarizes the structure chart information which is pertinent to the module being dis-
played, and provides direct access to the relevant source code. From the Mspec for a given
module, the user can easily move to the Mspecs of related modules and the DDE’s for any
relevant global variables.

IO ! PREEMPT (¢ SRR 6 IOESmEE—TE O1 MSHTSIC: e
Fils Wnole DOE Annotate Print RET OKREF Flle Whole_DDE Annotats Print RET CXREF

AMitributes: (dets flow, pel) Attributes: (dats flaw) l

WSHTSUC = PREENPT o+ SCHED ¢ PRIORITY o+ ENTRANCE

TYPE 1 ey + NODID + SNDGHOD ¢ TYPPE a
ConPON ISMALL/soURCe.Cas Cline: SAT> []
FILE SAML/source.cae cline: S8 I feeeeeeeee
therizonts) table, i-dimensional
TYPE H
CONPOOL SSMRLL/source .cas Cline: 495
FILE ISNALL/source .cos <line: 435>

o) eommmmmmm—m— ¢ it i B

FIGURE 3. Two examples of DDEs produced by CMS RET, displayed by Teamwork/SD

The DDE describes a global data item, displaying its structure and type, as well as the
location of its declaration (displayed with and without reference to any include files). If
the item in question is a table, its DDE gives the user immediate access to its fields’ DDEs.
In addition, the DDE provides direct access to the relevant source code, and permits the
user to display a list of modules which access the data item in question.

The objective of the CMS-2 Reverse Engineering Technology is to provide the information
for the displays in Figures 1, 2, and 3. To achieve this, GE built upon two past projects: a

NO00014-91-C-0240 Final Report - Revised July 1992 3

CMS-2 to Ada translator (CMS2Ada) [1] and a Jovial Reverse Engineering Technology
(JRET) [2]. CMS2Ada provided CMS-2 language capabilities which could be reused, and
JRET provided a framework for a general reverse engineering technology which could be
adapted to fit CMS-2.

The CMS-2 Reverse Engineering Technology is made up of four functional areas:

1) Information Extraction, 2) Comment Processing, 3) Database Generation, and the 4)
Cadre Teamwork interface. The first two functions (Information Extraction and Comment
Processing) operate on a file-by-file basis, collecting relevant information into a language-
independent format. Database Generation builds a system-wide view of the information,
writing it into a form which Teamwork can process. The final functional area is Cadre
Teamwork/SD. These four functions work together to visually present as-built architec-
tural information about an existing system. Figure 4 shows how these areas fit together.

The bulk of the work for this contract was done on the first two functional areas: Informa-
tion Extraction and Comment Processing. The Database Generator was reused from JRET
and Teamwork/SD is a commercial product from Cadre, which was extended using their
extensible interface!. (These extensions were also reused from JRET.)

Statement A per telecon James Smith

ONR /Code 1267
Arlington, VA 22217-5000

NWW 7/15/92

1. See Teamwork User Menus User’s Guide, Chapters 2 and 3 for a detailed description of this facility.

N00014-91-C-0240 Final Report - Revised July 1992 4

.
t

Do&

[

Accesion For
NTIS CRa&l
DTIC TAB
Unannouiced
Justification
By .

Distiib s
—

-

Lt
JLB:” e e

CMS-2
Source Files

(1) Information Extractor

@ “middle files
(2) Comment Processor
Yy

(3) Database Generator

ret.script ret.ms

(4) crev (Cadre)

(4) twk_put (Cadre)

Cadre

Teamwork
Database

FIGURE 4. System Overview of CMS RET

NO00014-91-C-0240 Final Report - Revised July 1992

Chapter 2.0 Automatic Operation, Installation, and Setup

2.1 Automatic Operation

CMS RET is run as a serxes of steps. These steps are usually run across all Computer Soft-
ware Configuration Items! (CSClIs) in a CMS-2 system when the initial build of the Team-
work database is done. (See Section 2.3 for further details about CSCls.) Over time, as files
change, there may be a need to rebuild the database. If only a small number of CSCIs have
been affected, it may be preferable to run rebuild only on the part of the database dealing
with the affected CSCI’s.

The $RET_DB_HOME/admin/build-ret script will run all the steps, either for one CSCI or
for the whole CMS-2 system. It takes care of all the details and housekeeping involved,
and produces log files so that the user can monitor its progress. It is invoked as follows:

$RET_DB_HOME/admin/build-ret [n [CSCI_name]]

n - is an integer between 1 and 7 specifying which operation is to be performed. If it is not
entered on the command-line, build-ret prompts for an input. The choices are as follows:

CMS Reyv pass 3 (information extraction)
CMS Rev Comment Processing

CMS Rev pass 4 (system integration, part 1)
Post-Process CMS Rev (system integration, part 2)
Create TeamWork Database

Dump TeamWork Database

Restore TeamWork Database

NNV A WN -

CSCI_name- indicates the CSCI on which the specified operation should be performed. If
omitted, the processing will affect all CSCI’s, as determined by the contents of SRET_DB_-
HOME/src/search.paths.

In normal operation, one would call the script with option 1, then 2, and so on, until option
5 had been performed. A CSCI name is not generally specified unless a particular CSCI is
being rebuilt separately for some reason.

Here is the sequence of commands and system responses which would be issued to build a
full CMS-2 system which contains the CSCIs COLLECT and ANALYZE:

> $RET_DB_HOME/admin/build-ret 1

Begin RET Build Program, Tue Apr 21 10:01:36 EDT 1992
ANALYZE CMS Rev Pass 3 Tue Apr 21 10:01:39 EDT 1992
COLLECT CMS Rev Pass3 Tue Apr 21 10:01:54 EDT 1992
End RET Build Program, Tue Apr 21 10:02:14 EDT 1992

> $SRET_DB_HOME/admin/build-ret 2

Begin RET Build Program, Tue Apr 21 10:02:28 EDT 1992

1. See DOD-STD-2167A, June 4, 1985, for definitions relevant to Computer Software Organization.

NO00014-91-C-0240 Final Report - Revised July 1992 6

ANALYZE CMS Rev Comment Processing Tue Apr 21 10:02:31 EDT 1992
COLLECT CMS Rev Comment Processing Tue Apr 21 10:02:42 EDT 1992
End RET Build Program, Tue Apr 21 10:02:50 EDT 1992
> $RET_DB_HOME/admin/build-ret 3
Begin RET Build Program, Tue Apr 21 10:03:03 EDT 1992
ANALYZE CMS Rev Pass 4a Tue Apr 21 10:03:05 EDT 1992
COLLECT CMS Rev Pass 4a Tue Apr 21 10:03:08 EDT 1992
CMS Rev Pass 4b Tue Apr 21 10:03:12 EDT 1992

ANALYZE CMS Rev Pass 4c Tue Apr 21 10:03:15 EDT 1992
COLLECT CMS Rev Pass 4c Tue Apr 21 10:03:23 EDT 1992
End RET Build Program, Tue Apr 21 10:03:33 EDT 1992
> $RET_DB_HOME/admin/build-ret 4
Begin RET Build Program, Tue Apr 21 10:03:49 EDT 1992
ANALYZE CMS Rev Post-Processing Tue Apr 21 10:03:51 EDT 1992
COLLECT CMS Rev Post-Processing Tue Apr 21 10:03:55 EDT 1992
End RET Build Program, Tue Apr 21 10:03:59 EDT 1992
> $RET_DB_HOME/admin/build-ret 5
Begin RET Build Program, Tue Apr 21 10:04:16 EDT 1992

% Starting crev and twk_put *** Tue Apr 21 10:04:18 EDT 1992
yes to proceed, CTRL/C to abort: yes
crev and twk_put pass for ANALYZE Tue Apr 21 10:04:21 EDT 1992
crev and twk_put pass for COLLECT Tue Apr 21 10:06:12 EDT 1992

*** Completed crev and twk_put *** Tue Apr 21 10:10:46 EDT 1992
End RET Build Program, Tue Apr 21 10:10:47 EDT 1992

If the system had been built once already but changes had occurred only in ANALYZE, the
user could rebuild only that CSCI by issuing the same set of commands, but with ANA-
LYZE appended to each.

Options 6 and 7 are not a normal part of building the system. They are useful for backups
and for transporting the database between systems. They simply invoke the appropriate
Cadre utilities. When option 6 is invoked without a CSCI name, the dump is placed into
$RET_DB_HOME/dump/twk-dump. If a CSCI name is specified, then the dump goes into
$RET_DB_HOME/dump/csci_name.twk-dump. When option 7 is chosen, it loads the files
from the dump files written in option 6.

Build-ret also produces log files. These are found in the directory $RET_DB_HOME/log.
Here is a list of the log files and where they are produced:

passl ¢sci_name.p3-log

pass3 csci_name.p4a-log, p4b-log, csci_name.p4c-log

pass5 csci_name.twk-log

pass6 twk-dump-log (if invoked without CSCI name)
csci-name twk-dump-log (if invoked with CSCI name)

pass7 *wk-load-log (if invoked without CSCI name)
csci-name.twk-load-log (if invoked with CSCI name)

N00014-91-C-0240 Final Report - Revised July 1992 : 7

2.2 RET Installation

Once the distribution tape is received, the contents should be extracted using tar (a Unix
utility). This will create a directory named ret, with several subdirectories. All RET users
will need to create an environment variable, SRET_DB_HOME, which contains the path
name of this ret directory.

There are several files in the directory $SRET_DB_HOME/sys which must be customized. In
the files listed below, the string “$SRET_DB_HOME" must be replaced with the hard-coded
path name of your installation’s ret directory (e.g. /common/sund/ret). The affected files
are:

dd.menu (1 substitution)
dde.menu (1 substitution)
desktop.menu (1 substitution)
dpi.menu (1 substitution)
file.menu (1 substitution)
ms.menu (1 substitution)
pi.menu (2 substitutions)
sc.menu (4 substitutions)
config_file (10 substitutions)

The only other requirements are that the Cadre Teamwork and Crev products must be
installed. Please refer to the Cadre documentation [4] for this procedure.

2.3 System Setup

Once RET has been installed, the user must load into it the source system to be examined.
There are two steps involved with this:

1. in $SRET_DB_HOME/src, update the file search.paths to contain only the names of the
CSCI’s which are part of the system to be examined.

2. in SRET_DB_HOME/src, create a soft UNIX link to each CSCI entered in s2arch.paths.
(Each CSCI should now have a directory

3. filled with the source files associated with it.)

It should be noted that CMS RET views a CMS-2 system as a set of CSCIs. Each CSClI is a
subdirectory of the overall system directory, containing source files which are presumably
related. Even if there is only one source directory for a project, it should appear as a subdi-
rectory of the project itself, and be considered a CSCI. It is generally advisable for the CSCIs’
names to be all capital letters.

N00014-91-C-0240 Final Report - Revised July 1992 8

Chapter 3.0 Information Extraction

3.1 User Perspective

The user will run this pass on every complete source file in the CMS-2 system. (Include
files are brought in automatically by the files which reference them.) This can be done
using the build-ret script described in Section 2.1, or by issuing the command:

cms2cdif.p3 -csci csci_name { file_names)

so that each source file in every CSCI is processed. file_name is a non-empty list of the
files to be processed and CSCI_name is the name of the CSCI containing these files. (csci_-
name must not contain wild cards, but file_name may.) The command must be issued
within the appropriate CSCI. For each file processed, there will result a middle file and a
comment file, which are used in the later steps. The formats of the middle and comment
files are given in Chapter 8.0.

3.2 Internals

The Information Extractor is written in Ada, and has two basic parts (the parser and the
extractor), both of which interface to our internal representation of the CMS-2 language.
The parser and internal representation were completely reused from the CMS2Ada trans-
lator, with a few extensions to expand our language coverage. (These are detailed in the
description of the parsing package in 3.2.2.) Parts of the extraction mechanism were
adapted from JRET (the Jovial Reverse Engineering Technology), but much of it was
rewritten because of the differences between the internal representations of CMS-2 and
Jovial. The new version was written with liberal use of generics and non-language specific
data structures, with the hope that most of it will be reusable should we ever want to
reverse engineer another language.

The remainder of this section contains a brief description of the packages in the Informa-
tion Extractor, the relationships between them, and a more detailed look at some of the
more important packages.

3.2.1 The packages comprising the Information Extractor
In the list that follows, * indicates almost complete reuse, # indicates significant reuse, and
italics indicate that the package is generic.
*Main * (contains main driver, handling command-line interface and file control)
¢ CMS_Records * (description of the nodes which make up the internal representation)
¢« CMS_Interface * (access routines for CMS_Records)
¢ CMS_Utils (some general utilities not available in CMS_Interface)
eParse * (creates a parse tree, made up of structures from CMS_Records)
e Lexical Analysis *

N00014-91-C-0240 Final Report - Revised July 1992 9

¢ Symbol tables and symbol table management * (several related packages)

eParse “ontrol * (helper package for parser and classification routines)

e Extract_.ifo # (high-level node-processing routines; basically sorts out the nodes)
eData_Processing # (mid- and low-level routines specific to data declarations)

sExecutable_Processing # (mid- and low-level routines specific to executable state-
ments)

*Option_Processing (mid- and low-level routines specific to option statements)
s Structure_Processing (mid- and low-level routines specific to structure statements)

« Subprogram_Processing # (mid- and low-level routines specific to subprogram decla-
rations)

e Print_Middle # (language-independent printing routines; mainly utilities)
eSource_file_database * (associates nodes with file names and line numbers)
*Scoping# (determines which data items are global and which are local)

eSubprogram_Lists # (data package for communication between Subprogram_Pro-
cessing and Executable_Processing)

« System_Info (data package indicating what options are currently in effect and what
structure is being processed)

*Debug _Flags * (framework for dubugging)

e Comment_Handler # (received comments and context indications from the parser and
prints to the comment file as appropriate)

e Comment_Helper (Language specific utilities unique to comment handling)

Figure 5 shows the with’ing relationships between these packages.

N00014-91-C-0240 Final Report - Revised July 1992 10

Debug_Flags ‘

Parse_Control

Extract
Opt_P Struc_| Data_P Sub P Exec_P
v v »'// \ _
Sys_Info |g—{ Print_Middle Sub_Lists Scoping

L CMS_Utils v
A

| Sourcefile_DB | g | Parser/Lexical

Symbol Table Com. Handler

I

O P YR PP U PR _ o Hal
 In addition, almost all the packages with and : om. Helper

: use cms_records and cms_interface, the ,
: packages containing the internal representa- :
: tion for CMS-2 :

..

3 = relatively language-independent 3 = language-dependent

FIGURE 5. With’ing Relationships be.ween Packages

NO0O0014-91-C-0240 Final Report - Revised July 1992

3.2.2 Details of Important Packages

Parsing and Reptesentation Packages: These include CMS_Records, CMS_Interface,
and the parser, lexical analyzer, and symbol-table packages. As a baseline, we reused these
packages from the CMS2Ada translator, but extended them as part of this contract to
address certain CMS-2 constructs which were not previously handled. These include
macro expansions (via the means and exchange statements), user-defined type declara-
tions, and the terminate phrase. In addition, a means for processing cswitch directives was
designed, but not implemented.

Parse_Control: is a generic package containing a pointer to the top node of the parse tree
and the routine which calls the (instantiated) parser and extractor.

Extract_Info: contains the top-level extraction routine, and those generalized routines
which classify each node and drive the processing. The top-level extraction routine also
takes care of the file control for the middle file being created.

Visible Routines:
Process_A_Node
Process_Seq_Of_Nodes
Is_Receptacle
Process_Receptacle
Process_Seq_Of_Receptacles
Is_Expression
Process_Expression
Process_Seq_Of_Expressions
Extract

Data_Processing: contains routines to classify and process the nodes which represent data
declarations. The processing includes checking the declaration for usages of other data
items, and printing appropriate information to the middle file.

Visible Routines:
Is_Data_Decl
Process_Data_Decl

Executable_Processing: contains routines to classify and process the nodes which repre-
sent executable statements. The processing includes checking for data uses and subroutine
calls, and keeping track of any which are found.

Visible Routines:
Is_Executable_Node
Process_Executable_Node

Option_Processing: contains routines to classify and process the nodes which represent
option statements. The processing generally entails setting global variables to reflect the
options found.

Visible Routines:
Is_Option_Node

N00014-91-C-0240 Final Report - Revised July 1992 12

Process_Option_Node

Structure_Processing: contains routines to classify and process the nodes which represent
structural statements. This processing generally consists of making sure all statements
within the structure are processed.

Visible Routines:
Is_Structure_Node
Process_Structure_Node

Subprogram_Processing: contains routines to classify and process the nodes which repre-
sent subprogram declarations. This processing includes setting up a framework in which
to collect information about the subprogram’s activities, making sure all statements within
the subprogram are processed, and writing the information collected to the current middle
file.

Visible Routines:
Is_Subprogram_Decl
Process_Subprogram_Decl

Print_Middle: is a generic package which contains a file pointer to the middle file, and
routines to handle much of the printing for it. The idea behind this package is that the for-
mat of the middle file is language-independent, even though the internal representation of
the information is not. Therefore, the routines in print_middle use language-specific
instantiated “helper” routines in order to access any extra information needed, and then
print everything out in a standard format.

Visible Routines:
New_Middle_File
Get_Middle_File
Close_Middle_File
Comma_Space
Print_Component_Decl
Print_Extended_Name
Print_Formals
Print_Simple_Decl
Print_Start_of_Composite_Decl
Print_Source_Info
Print_TW_Auttribute

Subprogram_Lists: is a generic package which contains the infrastructure which the sub-
program_processing routines use to keep track of the reference information collected. It
serves as the prime communication mechanism between the Subprogram_Processing and
Executable_Processing packages.

Visible Routines:
Add_To_Calls
Print_Calls
Add_To_Reads
Print_Reads

N00014-91-C-0240 Final Report - Revised July 1992 13

Add_To_Writes
Print_Writes
Print_Reads_And_Writes
Initialize_Subprogram_Lists
Update_Reads_And_Writes
Push_Locals

Pop_Locals
Add_To_Locals
Add_To_Params
Mem_Locals

Mem_Params

Chapter 4.0 Comment Processing

4.1 User Perspective

The user will run this pass on every .comment file produced as a result of the Information
Extraction. This can be done using the build-ret script described in Section 2.1, or by issu-
ing the command

gawk -f SRET_DB_HOME/cmsrev/bin/coments.awk *.comments

(see Section 2.2 for the proper setting of the SRET_DB_HOME environment variable).
(gawk is gnu awk. If your installation does not own a copy, use the one in $SRET_DB_-
HOME/cmsrev/bin.) Since this capability must be sensitive to the commenting conven-
tions of the current project, it is recommended that the user customize the comments.awk
program to reflect the prevailing conventions. Those planning to do this customization
would be well-advised to read Section 8.2, which describes the format of the .comment
files.

4.2 Internals

The .comment files written by the Information Extractor contain a line for each comment
found, and one for each “interesting” construct encountered in the source code. Interesting
constructs include data declarations, subprogram declarations, header blocks, proc and dd
statements. Thus the files contain not only the comments, but some context condensed out
of the source code. A distinction is made between COMMENT ... $ constructs and in-line
comments, resulting in even more context information.

The purpose of the comments.awk program is to create an .ext_com file for each subpro-
gram declaration found in a .comment file. This .ext_com file contains exactly the text
that will eventually appear in the Mspec for that subprogram in the Cadre database. The
standard comments.awk program, included with this release, selects as relevant the com-
ments which fall between the subprogram’s declaration and its actual code.

N00014-91-C-0240 Final Report - Revised July 1992 14

Chapter 5.0 System Integration

5.1 User Perspective

There are several passes involved in this activity. They can be run via the build-ret script
described in Section 2.1, or by issuing the following commands:

(in each CSClI directory)

cms2cdif.pda -csci csci_name *.middle

(in parent directory)

cat *.decls | sort | awk -f $SRET_DB_HOME/admin/p4b.awk
cms2cdif.p4b -P search.paths *.export

(in each CSCI directory)

cms2cdif.pdc -csci csci_name -crev -mspec -dde *.middle
$RET_DB_HOME/admin/do_post csci_name

(See Section 2.2 for a description of the $SRET_DB_HOME environment variable.) If the
passes are run outside of the build-ret script, there is a set of files which must exist before
running them. In each CSCI, limits.txt must be present. This should be copied from
$RET_DB_HOME/admin, or it can be made an empty file, in which case no DDE’s will be
produced. In the CSCI’s parent directory, search.paths must exist. It will contain the
names of the CSCI’s which are to be active (this would typically be all of the subdirecto-
ries).

The output of these steps is the set of files twk.script, ret.crev, ret.ctl, ret.dd and ret.ms.
These are used in building the Teamwork/SD reverse engineering database.

5.2 Internals

The purpose of these steps is to reconcile any name clashes which may occur, either
within or between CSCI’s, to resolve inter-CSCI references, and to build the CDIF! repre-
sentation of each CSCI’s information. Briefly, the processing responsibilities are divided as
follows: cms2cdif.p4a compiles two lists for each CSCI, one for data item names and one
for subprogram names. p4b.awk and cms2cdif.p4b create new names where necessary to
avoid name clashes. cms2cdif.p4c creates the CDIF files which will be fed into the Team-
work database, and a script for loading them. do-post edits a few files so that the Team-
work extensions will read them correctly.

1. CASE Data Interchange Format

N00014-91-C-0240 Final Report - Revised July 1992 15

Chapter 6.0 Building the Teamwork/SD Reverse Engineering
Database

6.1 User Perspective

The CSCI’s for the databases being constructed must exist in Teamwork. If they do not,
then start Teamwork and create new models with these CSCIs’ names. Once the models
exist, construct their respective databases either by using the build-ret script described in
Section 2.1, or by issuing the following command in each CSCI:

/bin/sh twk.script

6.2 Internals

This step invokes crev and twk_put to build the database. crev uses ret.crev and ret.ctl to
produce the Teamwork structure charts, and twk_put creates Mspecs from ret.ms, and
DDEs from ret.dd.

Chapter 7.0 TeamWork Environment

7.1 Invocation

In order to use the extensions GE-supplied extensions, Teamwork must be invoked using
the RET config_file. This config_file must be customized during installation, as described
in Section 2.2. Once that is done, invoke Teamwork as follows:

teamwork -c SRET_DB_HOME/sys/config_file
(See Section 2.2 for the proper setting of the SRET_DB_HOME environment variable.)

7.2 Basic Teamwork Displays

Most of the Teamwork displays are standard to the Teamwork environment, and are
explained in the Cadre documentation. The Mspec and DDE displays are somewhat cus-
tomized for RET, so they are described here.

The Mspec (Module Specification) display is intended to describe the important aspects of
a module. In this context, a module cormresponds to a subprogram. The information con-
tained is the following: subprogram parameter names and directions; global variables
accessed, along with an indication of whether they are read or written; modules called;
calling modules; and comments extracted from the source code of the module.

The DDE (Data Dictionary Entry) display is intended to convey the important features of a
data item. The information supplied for a simple variable includes: type information;
actual location (file and line number) of its declaration; and location of its declaration, tak-
ing into account include expansions. For arrays, the number of dimensions, direction, and
any field names are also included.

NO00014-91-C-0240 Final Report - Revised July 1992 16

7.3 GE-Supplied Extensions

The user should consult the Cadre documentation for information on the standard Team-
work environment [3]. What follows here is a description of the GE-supplied extensions to
that environment, and guidelines for how to use them.

Displaying Source Files: There are times when the summarized information is not suffi-
cient for the task at hand. In these cases, it is useful to have a quick method of viewing the
actual source code. In order to do this, select a module of interest from a structure chart or
Mspec, or a data item from a DDE, and choose the RET menu item “Display Module
Source”. The corresponding source file will be displayed, and the user can then search on
the name of the module or data item in order to find the desired declaration.

Displaying Data Usages: It is often important to know which modules use a particular
global variable. This information is available from the full Data Dictionary as well as the
Mspec display. To view it, simply select the desired global variable, and choose either
“Display Where Ref” or “Display Where Ref All” from the RET menu (the latter extends
the search across all active CSCIs). The information will be retrieved and displayed in a
window which lists the modules in which that data item is referenced. From that window,
the user may move to the Mspec for any of the referencing modules by selecting its entry
and choosing the RET menu item “Show Module Spec”.

Displaying Calling Modules: Although the structure charts are effective in showing the
called modules of a particular subprogram, it can be tedious working backwards to find the
calling modules. There are two ways to find this information easily. The first method is to
view the Mspec of the desired module and find the list of calling modules. The second
method is to select the desired module from a structure chart and choose the RET menu
item “Display Calling Modules”. The information will be retrieved and displayed in a
window which lists the modules which call the selected one. From that window, the user
may access the Mspec for any calling module by selecting its entry and choosing the RET
menu item “Show Module Spec”. (From there, “Show SC” from the Whole_Mspec menu
will bring up the corresponding structure chart.)

Displaying Mspecs from Structure Charts: When viewing a structure chart, select the
desired module and choose the RET menu item “Open Module Spec”. The corresponding
Mspec will appear.

Displaying DDE's for the Fields of a Table: When viewing the DDE of a table or array, it is
not enough to see just that item’s information; the component items’ entries are equally
important. These can be viewed easily by highlighting the desired name within the table’s
DDE and then choosing the RET menu item “Open DDE”. A new DDE window will open
with the desired entry.

For a more in-depth description of the GE-enhanced Teamwork environment, please see
the CMS RET User's Manual found in Appendix A.

N00014-91-C-0240 Final Report - Revised July 1992 17

Chapter 8.0 File Formats

8.1 Middle Files

The middle files hold the information which is extracted from the CMS-2 source files,
before it is integrated into a system view. In the case that this technology were ported to a
CASE tool other than Cadre, these files would be the starting place for the re-implementa-
tion.The following is the grammar for the middle files.

file ::= “file” string_literal [“csci” identifier] {declaration }

declaration ::= context_decl | external_decl | subroutine_decl | object_decl |
group_decl | type_decl

context_decl ::= “context” identifier [id_list] [source_info]
context_list ::= { context_decl }

external_decl ::= “external “ global_declaration
global_declaration ::= subroutine_decl | object_decl | type_decl
subroutine_decl ::= procedure_decl | function_decl

procedure_decl ::= “procedure” identifier [source_info]
subroutine_info “end”

function_decl ::= “function” identifier {source_info] type_info
subroutine_info “end”

subroutine_info ::= [“long” “name” string_literal]

[formal_list] [local_list] [context_list] [calls_list] [reads_list]

[writes_list] [reads_writes_list] [nested_subs_list]

[“header” “file” string_literal] [“copy” “files” string literal]

{ pseudo_code_list])

object_decl ::= simple_decl | composite_decl

simple_decl :: = “simple” identifier [“constant”] [source_info]
[“csci” identifier] tw_attr type_info [“members” list]

composite_decl ::= “composite” identifier [“constant”] composite_class
[source_info] [“csci” identifier } [index_info] tw_attr
(component_list | type_info)

index_info ::= “indexed” “(* integer_literal *“)”

NO00014-91-C-0240 Final Report - Revised July 1992 ' 18

tw_attr ::= [tw_prim] tw_flow
tw_prim ::= “PEL” | “CEL” | “DEL”
tw_flow ::= “controlflow” | “dataflow” | “bothflow” | “store”

group_decl ::= “group” identifier [source_info] [“csci” identifier]
{ declaradon } “end”

formal_list ::= “formals” “(“ formal { *,” formal } *)”
formal ::= identifier direction type_info
local_list ::= “locals” id_list
a_call ::= identifier [“nested”] [actual_list]
actual_list ::=*“(* actual { “,” actual } “)”
actual ::= (“(“ object_decl *“)”) | identifier
direction ::= (“in” [“out”]) | “out”
_decl ::=“type” (simple_type_decl | composite_type_decl)

simple_type_decl ::= “simple” identifier [source_info] [“csci” identifier]
tw_attr type_info [“members” list]

composite_type_decl ::= “composite” identifier composite_class
[source_info] [“csci” identifier] [index_info] tw_attr
(component_list | type_info [“members” list])

component_list ::= “(“ [(simple_decl | composite_decl)

(138 24

,” (simple_decl | composite_decl) }] “)”
composite_class ::= string_literal

type _info ::= string_literal

calls_list ::= “calls” “(“ a_call { “,” a_call } ©)”
reads_list ::= “reads” id_list

writes_list ::= “writes” id_list

reads_writes_list ::= “reads_writes” id_list

N00014-91-C-0240 Final Repon - Revised July 1992

19

nested_subs_list ::= “nested” { subroutine_decl }

pseudo_code_list ::= “pseudo_code” list

list ::= “(* string_literal { “,” string_literal } *)”

id_list ::= “(* identifier { “,” identifier } *)”

source_info ::= integer_literal string_literal [integer_literal string_literal]

identifier ::= string_literal | reserved_word_of_language

8.2 Comment Files

The comment files contain both the CMS-2 comments and some condensed context infor-
mation. These are the files which are input to the comment processor, which then produces
one .ext_com file for each subprogram, containing any relevant comments. The awk script
of the comment processor is user-customizable.

file ::= {entry }

entry ::= comment_entry | context_entry
comment_entry ::= same_line_entry | stand_alone_entry
same_line_entry ::= “SAME LINE: “ string
stand_alone_entry ::= “COMMENT: “ string

context_entry ::= data_decl | subprogram_decl | structural_entry |
“CODE” | “UNKNOWN CODE”

data_decl ::= “DATA” | “EQUALS” | “FIELD” | “LOADVRBL” |
“NITEMS” | “PARAMETER” | “SYS-INDEX” | “TABLE” |
“VARIABLE”

subprogram_decl ::= “EXEC-PROC” identifier |
“FUNCTION” identifier |
“PROCEDURE” identifier |
“END"

structural_entry ::= “AUTO-DD” | “END-LOC-DD” |
“END-MAJOR-HEADER” | “END-SYS-DD” | “END-SYS-PROC”’|
“END-SYSTEM” | “LOC-DD” | “MAJOR-HEADER” |
“MINOR-DD” | “PROGRAM-BODY” | “SUBPROGRAM-DD” |
“SYS-DD” | “SYS-PROC” | “SYSTEM”

N00014-91-C-0240 Final Report - Revised July 1992 20

Part II ENCORE-SRE Integration Study

Task III of this project sought to study the feasibility of integrating GE’s ENCORE system
with Computer Command and Control Corporation’s (CCCC) Software Re-Engineering Envi-
ronment (SRE). (The original title of this contract refers to MODEL which was developed
at CCCC as part of their reengineering efforts, but the reengineering environment to which
this study refers is SRER!‘he initial phase of the study compared the functionality of the
two systems to determine whether it makes sense to integrate them. This was followed
with the design of a method for integrating the two systems. As a result of our study, we
have concluded that the two systems could functionally complement each other and that
there are no insurmountable technical barriers blocking the integration. The issues
involved with integrating the two systems are discussed in the following paragraphs.

The ENCORE system promotes reuse of heritage code via automatic translation and
reengineering. Components of the ENCORE system include translators from FORTRAN to
Ada and CMS-2 to Ada, control and data restructuring, basic metric capabilities, limited
dataflow analysis, and the ability to parse and regenerate Ada programs. The restructuring
components (control and data) provide an automated mechanism for understanding and
improving the fine grained aspects of a software system. The SRE system provides an
environment for viewing and modifying the coarse grained architectural features of an
existing software system. Combining ENCORE and SRE would produce an environment
for reengineering both at the fine grained and coarse grained levels.

Combining the two systems would require that they share the information about the code
being reengineered. Currently both systems operate on their own distinctive internal repre-
sentation of Ada code. (The ENCORE internal representation is called the IRep and the
SRE internal representation is called the ESL.) Since the implementations of the two repre-
sentations are vastly different and a great deal of reengineering functionality has already
been developed specific to each implementation, we recommend a loose coupling of the
two systems via translation between the two internal representations. Though the imple-
mentations of the two internal representations are vastly different, they both embody the
same information and the mapping from one internal form to the other appears to be
straightforward. (The IREP is described in Appendices B, C, and D, while the ESL is pre-
sented in Appendix E.)

This approach avoids the reimplementation of reengineering capabilities just for a differ-
ent internal representation and it allows the two companies to further develop their prod-
ucts without having to tightly coordinate changes.

The only stumbling pomt in this integration scheme is a platform problem. The ENCORE
system runs on a UNIX! platform and currently uses the Suanewzwmdowmg system. The
SRE system is tightly coupled with the DECdesxgn system and therefore must run on a

1. UNIX is a registered trademark of AT&T Bell Laboratories
2. SunView is a tradernark of SUN Microsystems, Inc,
3. DECdesign is a rademark of Digital Equipment Corporation

N00014-91-C-0240 Final Repon - Revised July 1992) 21

VMS platform. This problem can be overcome by either moving one system to the other
platform, or creating a mechanism for passing the information between the internal repre-
sentations (and therefore between machines) via ASCII files.

If the ENCORE user interface were rewritten in X, then ENCORE could run on the VMS
platform. To move SRE to a UNIX platform, CCCC would have to either get an implemen-
tation of DECdesign for UNIX or replace the use of DECdesign in SRE with some other
database and visualization system. Either option involving SRE is estimated to require
more effort than moving ENCORE to VMS. We advocate changing the ENCORE user inter-
face to X, if integrated performance on a single platform is required.

The alternative to changing platforms is to provide a mechanism for passing the informa-
tion between the two reengineering systems via ASCII files. To use the systems in an inte-
grated manner, one would follow the following sequence of steps: 1) a collection of Ada
source code would be reengineered using one of the systems; 2) ASCII files capturing the
all the necessary information would be generated and passed to the other system; 3) the
other system would be used to further reengineer the Ada. (The passing of the ASCII files
would be bi-directional.) When the reengineering is finished, new Ada code would be
regenerated capturing the reengineering modifications made by both systems. With this
scenario, the ASCII files would have to completely capture all the information in the inter-
nal representations and both systems would have to be able to parse and print these ASCII
files.

Since the internal representations for the two systems currently contain the exact same
information as is contained in an Ada program, we have the option of choosing either an
abstraction of one of the internal forms or restructured Ada code for the format of the
ASCII files. A shortfall of the latter option is that it precludes future expansion of the inter-
nal representations. We ¢..pect that in the future we will want to expand SRE and ENCORE
to be able share computed information about the Ada code. Using Ada code as the means
of communication between the two systems would prohibit this expansion. Therefore we
recommend choosing an abstraction of one of the internal forms.

The ENCORE system currently has a prototype version of an ASCII file parser and printer
which consumes and produces an abstraction of the IRep. We call this software our IRep
Inputter/Outputter. As mentioned above, this software is only in prototype form at this
time, but with minimal effort it can be extended to handle the complete ENCORE IRep.
The software is written in Ada and can easily be integrated into both SRE (under VMS)
and ENCORE (under UNIX).

In summary, we are suggesting translation between the SRE ESL and ENCORE IRep as the
best way to integrate the two systems. To accomplish this an ESL <> IRep translator must
be built and either ENCORE will have to be moved to the VMS platform, or the IRep Input-
ter/Outputter will have to be made more robust and incorporated into both SRE and
ENCORE. The following pages provide an outline and estimates of the tasks involved with
each option.

N00014-91-C-0240 Fina! Repon - Revised July 1992 n

Figure 6 illustrates the envisioned system architecture for a merged ENCORE-SRE system
where ENCORE has been moved to the VMS platform.

SRE

[ENCORE

DECdesign

...............................

()

.. -

™\

[Data

ENCORE
parser/printer

Ada
-
Code

Control {_|

enossbresressvenssannsmvossvoncoafocnsan

4-/' reengineering

VMS Platform

modules

srnesannce

...

FIGURE 6. ENCORE - SRE Integration on a Common VMS Platform

To realize the integration shown in Figure 6, the following tasks must be completed:

* Software must be written to translate back and forth between ESL and IRep. (about 9

person months to complete)

e The ENCORE user interface must be rewritten in X. (about 9 person months)

*The ENCORE and SRE user interfaces must be updated to allow the user to switch
between the two systems (automatically transferring from one internal representa-
tion to the other). (about 1 person months - 1/2 person month for each system)

We believe a sound estimate for this form of integration is 20 person months.

NOO014-91-C-0240 Final Report - Revised

July 1992

Figure 7 shows how to integrate the two systems via ASCII IRep files.

................... SRE....oe.ourmrnnns, SRR 1.6/ 0) :{ S

IRep

DECdesign

|_Data
S VU W Control ||

5

VYMS Platform

sannding/ranndug
doyr
Inputter/Outputter
=
(47
o
191uud/asred
HJOONH

|
reengineering
modules

Yovocccovcnoomnsncnna

Ada
Code

Sun workstation

FIGURE 7. ENCORE - SRE Integration via ASCII IRep Files b

To implement the above integration the following must be done:

* Software must be written to translate back and forth between ESL and IRep. (about 9
person months to complete) (This is the same as the first bullet with the previous
integration option.)

*The IRep Inputter/Outputter must be made more robust. (about 3 person months to
complete)

*The IRep Inputter/Outputter must be incorporated into the SRE system. the file load-
ing process must be updated to load IRep files using the Inputter and translate the
IRep structure to an ESL structure, and the file writing process must be updated to
translate the ESL structure to the IRep structure and generate the ASCII IRep files
using the Outputter. (about 2 person months to compete)

*The ENCORE file load and file write must be updated to use the IRep Inputter/Output-
ter. (about 1 month to complete)

We estimate it will take 16 person months to achieve this form of integration.

N00014-91-C-0240 Final Repont - Revised July 1992 24

References

{1] CMS2Ada - a CMS-2 to Ada translator developed at GE Corporate Research and
Development. For information contact J. Sturman at GE Corporate Research and Devel-
opment, P.O. Box 8, Schenectady, N. Y. 12301 (518) 387-5457

[2] JRET - Jovial Reverse Engineering Technology developed at GE Corporate Research
and Development. For information contact J. Sturman at GE Corporate Research and
Development, P.O. Box 8, Schenectady, N. Y. 12301 (518) 387-5457

(3] Teamwork/SD User'’s Guide, Release 4.0, Cadre Technologies, Inc., 1990

[4) Teamwork System Administrator’'s Manual, Release 4.0, Cadre Technologies, Inc.,
1991

N00014-91-C-0240 Final Report - Revised July 1992 25

Appendix A
CMS RET User’s Manual

CMS RET User’s Manual

1.0 Introduction

The CMS Reverse Engineering Tool (RET) consists of CMS Rev and Teamwork/SD. CMS Rev has been
developed by GE CR&D and provides the ability to process CMS-2 source code! and create a software
maintenance database. This software maintenance database consisis of a Teamwork database of structure
charts, module specs, data dictionary entries and collateral files which contain information about the struc-
ture and contents of the source code being maintained. Teamwork/SD is a commercially supported product
available from Cadre Technologies. It has been augmented by user menus, shell scripts and access programs
to provide a customized and enhanced environment which utilizes the software maintenance database cre-
ated by CMS Rev.

This CMS RET User’s Manual describes the procedures for using the RET software maintenance database.
These procedures involve the use of the Teamwork/SD product from Cadre Technologies. The section Using
the RET Database documents the basic operations that the software maintainer would need to perform in
order to utilize the software maintenance database.

Also contained in this manual are the procedures for creating the RET software maintenance database using
CMS Rey, related programs and shell scripts. These procedures are performed in batch mode when neces-
sary because of a new release of the source code being maintained, or as a result of new version of CMS
Rev. The section Building the RET Database documents the steps necessary to build a new RET software
maintenance database. The section Installing the RET Processors documents the steps necessary to install
CMS Rey, related programs and shell scripts before beginning the process of building a new RET database.

2.0 Using the RET Database

2.1 Invoking RET

RET is invoked by executing Teamwork using the RET configuration file. This can be accomplished by
manually typing the Teamwork command or by selecting the appropriate menu item from an OpenWindows
workspace menu. The user then interacts with Teamwork to access the RET software maintenance database.
The RET configuration file provides the user with access to the customized RET menus and to the special-
ized programs which access the RET software maintenance database.

A number of setup operations need to be performed before RET can be invoked: (1) Modify the Unix PATH
variable to include the Teamwork directories. (2) Initialize the Unix environment variable RET_DB_HOME
to specify the RET root directory. (3) Verify that the Teamwork DC server is running on the Teamwork
workstation server.

2.2 Using the Online Help

Each of the RET menus has a menu selection titled “Display Help Screen” that is the last selection on the
menu. Selecting this menu item will cause the context sensitive help screen to be displayed in a Teamwork

1. The current prototype handles a subset of the dialect known as CMS-2L. This subset is detailed in
Detailed Design for CMS-2 to Ada Translation, delivered to NSWC in January 1992,

Appendix A July 1992 1

window. In addition to a description of each menu item available to the user, there may appear hints to the
user on how to perform specific operations.

2.3 Selecting the Model of Interest

The first operation that the user must perform is to select the model of interest. Any further operations will
then pertain to is model which corresponds to a Unix directory.

The model of interest is selected by pulling down the Index menu from the desktop menubar, and selected
the menu item titled “Open Model Index.” This will cause a list of the models in the Teamwork database to
be displayed. Highlight the model of interest and select “Open PI” from the pullright menu, The Teamwork
process index for the selected model will be displayed. From this process index window, the user may access
structure charts, module specs, and the data dictionary associated with the selected model.

2.4 Navigating Structure Charts

Structure charts provide a graphical representation of the calling relationships between software modules.
The structure chart can be used as a “map” to guide the software maintainer in his/her understanding of the
underlying software. Off-page connectors are used in structure charts so that the amount of information on a
given structure chart is not excessive. The intent is o maintain readability when RET-generated structure
charts are printed on 8 1/2 by 11 inch pages.

To navigate downward in the module calling hierarchy using structure charts, the user may open the struc-
ture charts for a specified off-page connector. This is accomplished by selecting the off-page connector with
the mouse select button (left mouse button), palling down the RET menu from the structure chart menubar
and selecting the menu item titled “Expand Connector.” The structure chart for the off-page connector will
then be displayed.

To navigate upward in the module calling hierarchy using structure charts, the user may request to display a
list of modules which call the current module. The current module is, by default, the module at the top of the
structure chart. The user may override this default module by explicitly selecting another module on the
structure chart as current. The list of calling modules is obtained by pulling down the RET menu from the
structure chart menubar, and selecting the menu item titled “Display Calling Modules.” This will cause a file
window to open with a listing of calling modules. Any line of this file display may be selected to request the
structure chart for that calling module by pulling down the RET menu from the file menubar and selecting
the menu item titled “Open Structure Chart.” The structure chart for the selected calling module will then be
displayed. (NB: this is not currently working. Workaround: choose “Open Module Spec” from the RET
menu and then choose “Show SC” from the Whole_Mspec menu).

During the search, an icon is displayed with the title “CALL.” This icon will disappear when the search is
completed, and at that time a Teamwork window will display the results of the search. The “Display Calling
Modules” request may be aborted using the normal Unix window procedure (o quit a task represented by the
CALL icon.

2.5 Selecting the Module of Interest

A module is a CMS-2 subprogram. Modules are identified by the RET and a module spec is created for each
module. In addition, the boxes on structure charts are used to represent modules.

Modules are listed on the process index which is displayed when the model of interest is selected. The pro-
cess index lists the module specs and structure charts that are contained in the Teamwork database. The
modaule of interest may be selected from the process index, and then either a module spec or a structure chart

Appendix A July 1992 2

T N T - |

may be opened. Each process index entry has a SC or MS indicated. SC refers to structure chart and MS
refers to module spec. A structure chart may be opened by selecting a module name flagged with an SC,
pulling down RET from the process index menubar and selecting the menu item titled “Open Structure
Chart.” A module spec may be opened by selecting a module name flagged with an MS, pulling down RET
from the process index menubar and selecting the menu item titled “Open Module Spec.”

Structure charts show the calling relationships between modules. The module of interest may be selected
from a structure chart by pointing the mouse cursor at the structure chart that represents the module of inter-
est, and pressing the select mouse button (left mouse button). Then, the user may pull down the RET menu
from the structure chart menubar and select the desired menu item. The module of interest may be selected
from a module spec by selecting the text in the module spec body which is the name of the module of inter-
est. Text in the module spec body is selected by moving the mouse cursor on top of the first letter in the text
string. The mouse cursor should turn from an arrow into a block. The select mouse button (left mouse but-
ton) is then pressed and the mouse cursor is dragged across the letters of the text string. The selected text
will appear in reverse video. Then, the user may pull down the RET menu from the module spec menubar
and select the desired menu item.

2.6 Determining Module Interfaces

A module interface is a relationship between modules where one module calls the other module. Module
interfaces are represented graphically by structure charts, and textually by information in module spec bod-
ies. Module interfaces may be obtained by displaying the appropriate structure chart or module spec. From a
module spec, the user may open a Teamwork window for the structure chart containing the module spec.
This is accomplished by pulling down the Whole_Mspec menu from the module spec menubar, and select-
ing the menu item titled “Show SC.” This will cause the appropriate structure chart to be displayed.

2.7 Viewing Module Source Files

Module source files are the raw CMS-2 source files. Module source files may be displayed by selecting the
modaule of interest from a structure chart, or from a module spec body. Then, the RET menu item titled *Dis-
play Module Source” may be sclected to complete the request for a Teamwork file window to be opened on
the raw source file.

An important distinction to remember is that the name of a module is not necessarily the same as the name of
the source file containing the module. The boxes on structure charts and the “calls” and “called by” section
of the module spec body all use module names, not file names.

2.8 Searching Source Files for Text

A facility for searching raw source files has been built into RET. This facility is available from the process
index menubar. The user selects the model of interest and opens the appropriate Teamwork process index
window. The user then pulls down the RET menu from the process index menubar, and selects the menu
item titled “Search Source Files.” This causes a Teamwork input window to be displayed which requests the
user to input the filename and text patterns. The filename pattemn is a standard Unix filename pattern, includ-
ing the use of ? and * for wildcards. The text pattern is a grep regular expression, which needs to be enclosed
within either single or double quotes if the text pattern contains special characters.

After the filename and text pattemns are input, a Unix task is invoked to perform the search on the source
files. During the search, an icon is displayed with the tide “SCH.” This icon will disappear when the search
is completed, and that time a Teamwork window will display the results of the search. The “Search Source
Files” request may be aborted using the normal Unix window procedure to quit a task represented by the
SCH icon.

Appendix A July 1992 3

[TN T I O BT N T T N T W e TaE 3 T e e .

Source files may also be searched across all CSCIs. This is accomplished using the “Search Source Files”
menu item on the RET menu of the Teamwork desktop menubar.

2.9 Selecting the Global Variable of Interest

Global variables are variables which are used outside of the module in which they are declared. These global
variables are listed alphabetically within the data dictionary for each model, and also as part of the module
spec for modules which reference the global variable. The data dictionary is displayed for the model of inter-
est by pulling down the “Whole_Model” menu from the process index menubar, and selecting the menu item
titled “Open DD.” This will cause the requested data dictionary to be displayed. The global variable of inter-
est may be selected from this display of the data dictionary by moving the mouse cursor to the desired line of
the data dictionary and pressing the select mouse button (left mouse button).

When a module spec is displayed, the global variables listed may also be selected as the global variable of
interest. This is accomplished by moving the mouse cursor on top of the first character of the name of the
global variable. The mouse cursor will change from an arrow to a block. The user presses the mouse select
button (left mouse button) and drags the cursor across the global variable name until all the characters are in
reverse video. At this point, the global variable of interest on the module spec has been selected.

2.10 Viewing Data Dictionary Definition of Global Variables

The data dictionary contains an entry for each global variable. This entry contains information about the glo-
bal variable, including the actual declaration of the global variable, and information about the raw or
expanded source files. The declaration contains the type of the variable if the variable is an item. If the vari-
able represents a table, then the declaration contains information about the types of the items in the table.

When a global variable of interest has been identified from the data dictionary display, then the RET menu
from the data dictionary menubar is pulled down, and the menu item titled “Open DDE" is selected. This
will cause the data dictionary entry to be displayed. When the global variable of interest has been identified
from the module spec display, then the RET menu from the module spec menubar is pulled down, and the
menu item titled “Open DDE” is selected. This will cause the data dictionary entry to be displayed.

A data dictionary entry may reference other data dictionary entries. This happens when the global variable
represents a table or a block. In these cases, the name of the referenced data dictionary entry may be selected
and the RET menu may be pulled down from the data dictionary entry menubar, and the menu item titled
“Open DDE” selected. This will cause the selected data dictionary entry to be displayed in a new data dictio-
nary entry window.

2.11 Searching Module Specs for Variable References

Global variables are associated with modules, and their module specs. A capability exists to perform a
search for the modules which reference a particular global variable. This search is performed when the user
selects a global variable of interest, from either the data dictionary or a module spec, pulls down the RET
menu from the respective menubar, and selects the menu item titled “Display Where Ref.”

After the global variable cross reference is initiated, a Unix task is invoked to perform the search within the
Teamwork database. During the search, an icon is displayed with the title “REF.” This icon will disappear
when the search is completed, and at that time a Teamwork window will display the results of the search.
The “Display Where Ref” request may be aborted using the normal Unix window procedure to quit a task
represented by the REF icon. Module specs for modules identified in the cross reference display may be dis-
played by selecting the name of the module in the cross reference display, pulling down the RET menu from

Appendix A July 1992 4

PESE $# WA WAy

the file menubar, and selecting the menu item titled “Show Module Spec.” This will cause the respective
module spec to be displayed.

Global variable cross references may also be performed across all CSCIs. This is accomplished using the
“Display Where Ref All” menu item on the RET menu of the data dictionary or module spec menubar.

2.12 Printing From the RET Database

The user may obtain printouts of the process index, the data dictionary index, structure charts, module specs,
data dictionary entries, any Teamwork file window that has been opened, and any expanded module source
file.

2.13 Terminating Teamwork

Before terminating Teamwork, be sure that all Teamwork windows have been closed. Then, pull down the
“Stop” menu from the desktop menubar and select the menu item titled “Quit”, This will terminate the cur-
rent Teamwork session.

3.0 Building the RET Database

3.1 CMS Rev Processor

CMS Rev consists of three (3) separate passes. These passes combine to process the CMS-2 code, to process
the comments and to generate the output files used to create the RET software maintenance database. The
CMS Rev processor can be executed using the shell script called build-ret which is listed in the last section
(Details of Setup). This shell script takes care of deleting old versions of the build log files, and allows the
user to monitor its execution with time and date stamped messages informing the user of what pass is cur-
rently being executed. The file SRET_DB_HOME/src/csci-build is used to determine which CSCls are
being processed by CMS Rev in the current execution.

3.2 CMS Rev Post-Processors

The CMS Rev post-processors augment the processing performed by CMS Rev. Two operations are per-
formed: (1) modify some CMS Rev output files before they can be used by the RET interactive programs,
and (2) analyze some CMS Rev intermediate output files to create additional output files for use by the RET
interactive programs. This CMS Rev post-processing has been combined into a shell script called build-twk.
This shell script should be executed once for each CSCIL

3.3 C Rev and twk_put Processors

The C Rev and twk_put processors are Teamwork programs which are used to load the Teamwork data base.
C Rev uses CMS Rev output to create structure charts in the Teamwork database. twk_put uses CMS Rev
output to create both module specs and data dictionary entries in the Teamwork database. A shell script
called ret.script is created by CMS Rev to be used in loading the Teamwork database.

Appendix A July 1992 5

4.0 Installing the RET Processors

4.1 Teamwork Processors

The Cadre Teamwork products that must be installed include Teamwork/SD and Teamwork/C Rev. The
Teamwork/C Rev Browser is not needed by the RET.

4.2 CMS Rev Processors

The CMS Rev processors consists of multiple passes as follows: cms2cdif.p3, cms2cdif.pda, cms2cdif.p4b,
and cms2cdif.pdc. These executable programs should be installed before CMS Rev can be used to build the
RET database.

4.3 CMS Rev Post-Processors

The CMS Rev post-processors consists of the following programs:
build-ret
build-twk

build-csc
do-errors

5.0 Details of Set-up

5.1 Environment Variables
There is on major environment variable which must be set before running RET:

RET_DB_HOME - the directory in which all the executables and shells live

5.2 Scripts (preliminary versions)

There are several scripts which are useful in running RET (although it can be run manually). These scripts
can be found in RET_DB_HOME/admin, and they are as follows:

build-ret- a multi-function script which asks for user direction upon invocation. It’s current
functions are;: CMS Rev Pass3; CMS Rev Comment Extraction; CMS Rev Pass4;
Post-Process CMS Rev; Create Teamwork Database; Dump Teamwork Database; and
Restore Teamwork Database. The user is encouraged to review the script in order to
get an understanding of how RET is put together.

go-ret - a script which invokes Cadre Teamwork with the proper configuration file, eic.

5.3 Directories

There are two directories which the user should set up for each model. The first is SRET_DB_HOME/src/
model_name. This directory should contain the source files for the model. (This may be a soft link, if it

Appendix A July 1992 ' 6

proves convenient.) The second directory is SRET_DB_HOME/Ist/model_name. This should be created as
an empty directory. CMS RET places files in there during its processing.

5.4 Files

There are two files which the user may wish to update. They are SRET_DB_HOME/dat/csci-build and
SRET_DB_HOME/dat/csci-names. These are normally not needed for RET, but can be useful for rebuilding
the entire system via build-ret. They should contain the model names for the system, one per line.

There is one file which the user must add to the SRET_DB_HOME/src/model_name directory: limits.txt.
This file should have exactly one line in it which says *“do globals™.

Appendix A July 1992 7

Appendix B

Introduction to ENCORE Internal
Representation

Introduction to the ENCORE Internal
Representation

The Purpose of the Internal Representation.

The purpose of the ENCORE Internal Representation (or IRep, for short), is to allow the
various tools in ENCORE to manipulate Ada programs in a straightforward and uniform
way.

Some goals in the IRep design were:
1. There should be a logical abstract description of the IRep.

2. The IRep should be accessible via a logical interface that is independent of the physical
representation of the IRep in memory.

3. There should be a clean separation between lexical information and semantic informa-
tion.

4. One should be able to reconstruct the original source to an Ada program from the IRep
(modulo differences in formatting).

The Logical Structure of the Internal Representation

Logically, the IRep is a tree, with some backlinks for handling references to definitions
and labels, and symbol table structures to capture Ada programs. (The tree structure is
quite similar to DIANA, the standard internal representation for Ada.) Each tree repre-
sents the statements in the Ada code and the symbol tables represent the scoping and visi-
bility rules for the identifiers found in the code.

The IRep Program Tree

The tree structure consists of ‘nodes’ and ‘attributes.” The nodes represent the information
in the tree, while the attributes represent the edges of the tree.

The nodes are grouped into ‘classes,’ each class corresponding to a kind of Ada construct.
The attributes are also grouped into named classes. As an example, consider the class of
nodes corresponding to Ada assignment statements. Each such node must belong to the
class ‘assignment_stmt.’ Furthermore, each such node must have two attributes -- one
called ‘target,’ representing the destination of the assignment, and the other called
‘source,’ representing the expression to be assigned.

Appendix B May 1992 i 1

1. ADL: The Metalanguage Used to Describe the IRep Trees

The IRep tree is specified in a metalanguage called the Augmented Description Language,
or ADL, for short.

An ADL description consists of a series of ‘productions.’ The productions, in turn, can be
of the following kinds: stub productions, primitive productions, node productions, and
class productions.

1.1 Stub Productions
Stub productions have the syntax

stub <name> ;

These productions are used to define certain special nodes that are used in processing Ada
programs. There are exactly two stub productions

stub Empty;
stub Undefined;

The first production defines the ‘empty’ node, which is generally used to an optional
attribute that is not supplied (for example, a missing ‘else’ clause in an ‘if” statement. The
second production generally indicates either an error condition or an unsuccessful opera-

tion. For example, the value returned by an unsuccessful symbol table search is the ‘unde-
fined’ node.

1.2 Primitive Productions
Primitive productions have the syntax
primitive <name>;

Primitive productions are used to define external data types that are used as data at the
leaves of the IRep trees. The actual productions used in the Ada IRep tree are

primitive Boolean;
primitive Character;
primitive Float;
primitive Integer;
primitive String;
primitive Symbol;
The first five productions correspond to the five predefined scalar types in the Ada pack-

age Standard. The sixth production, ‘Symbol,’ corresponds to the type ‘Symbol,” defined
in the package ‘IForm_Symbols.” This Symbol type is used to represent Ada identifiers.

Appendix B May 1992 2

1.3 Node Productions
Node productions have the form

<name> => <attrl-name> : <attrl-descriptor>,
<attr2-name> : <attr2-descriptor>, ... ;

Node productions describe the internal structure of an IRep tree. The left hand side of a
node production indicates the class of the node involved, while the right hand side gives
the names and attributes of a node of that class.

Attributes can be either simple attributes, whose value is a node, or sequence attributes,
whose value is a sequence of nodes. Simple attributes have the form

<class-name>
while sequence attributes have the form
seq of <class-name>

An example of a node production having simple attributes is given by the production for
an Ada assignment statement, which is written

assignment_stmt => source : EXP,
target : REFERENCE;

This production states that each node of the class ‘assignment_stmt’ has two attributes, a
‘source’ attribute, whose value must be of class ‘EXP,’ and a ‘target’ attribute, whose
value must be of class ‘REFERENCE.’

As an example of sequence attributes, consider the production for an Ada else clause,
which is written

else_clause => statements : seq of STMT;

This production says that each node of class ‘else_clause’ has the attribute ‘statements,’
whose value is a sequence of nodes of class STMT.

One final note. It is possible that a particular class of IRep tree node might not have any
attributes. An example is the class of node that represents ‘null’ statements in Ada. The
production for this class is written

null_stmt =>;

We use a node production, rather than a stub or primitive production because

1. there can be more than one node of class ‘null_stmt’ in an IRep tree structure, which
rules out using a stub production, and

Appendix B May 1992

2. the class ‘null_stmt’ is not imported from another package, which rules out using a
primitive production.

Class Productions
Class productions have the form

<class-name> ::= <subclass1> | <subclass2> 1 ... ;

The classes on the right hand side of the production are called subclasses of the class on
the left hand side.
Class productions are used for two purposes:

1. To group certain classes together in a manner similar to union types in some program-
ming languages, and

2. To enable several classes to inherit one or more attributes.
A production thet satisfies the first purpose is
ACTUAL_COMPONENT ::= association | others_part | EXP;

This production says that a node of class ‘ACTUAL_COMPONENT" can be either of
class ‘association,’ class ‘others_part,’ or class ‘EXP.’ Thus the node production

aggregate => components : seq of ACTUAL_COMPONENT,;

indicates that a node of class ‘aggregate’ has an attribute called ‘components,” which can
take, for its value, a sequence of nodes, each member of which must be either an ‘associa-
tion,’ an ‘others_part’, or an ‘EXP.’

To illustrate the second purpose of class productions, suppose we have several different
kinds of nodes that possess a given attribute. In Ada, for example, package specifications,
package bodies, procedure specifications, procedure bodies, etc. all have an attribute
called ‘designator,” which denotes the name of the unit. Rather than include a separate
‘designator’ attribute in each node production, we could write the two following produc-
tions:

SINGLE_DESIGNATOR_ITEM => designator : Symbol;
SINGLE_DESIGNATOR_ITEM ::= pkg_spec | pkg_bdy | proc_spec | ... ;

The attribute ‘designator’ will then be inherited by all subclasses of the class
‘SINGLE_DESIGNATOR_ITEM.*

Appendix B May 1992 4

2. The External Representation of IRep Tree Structures

Externally, IRep tree structures are represented as one or more node structures. Node
structures are represented differently, depending on the kind of node involved.

1. Stub nodes are represented by the name of the stub class; thus the two stub nodes in the
Ada IRep tree are represented by

Empty
and

Undefined

2. Primitive nodes are represented by the class name, followed by the primitive value,
enclosed in parentheses. Some examples are

Boolean(TRUE)
Integer(3)
Float(5.38)
Character(‘a’)
String(“Abc™)
Symbol(“ABC”)

3. Structure nodes may be represented by the class name, followed by the attribute names
and values, enclosed within square brackets. An example is

assignment_stmt[target n_1034,
source Integer(3)]

4. A structure node may be preceded by a label. This indicates that the node can appear as
an attribute in more than one place in an Ada IRep tree. An example is

n_103: named_ref[designator Symbol(*x”"),
target n_102/]

5. Finally, a labeled node can be represented simply by its label, followed by a caret, as in
the reference n_1027 in the previous example. This allows us to represent circular data
structures in a linear ASCII form.

3. The Ada Interface to the Internal Representation

The interface to the Ada IRep tree is provided by three packages: AdaTran_Records,
Primitive_Node_Creation, and Primitive_AdaTran_Interface. The package
AdaTran_Records contains the definition of IRep tree nodes and sequences; the package
Primitive_Node_Creation provides functions for building IRep tree nodes; and the pack-
age

Primitive_AdaTran_Interface provides functions for accessing and changing the value
of the attributes of nodes.

Appendix B May 1992 h]

3.1 The Package AdaTran_Records

The package AdaTran_Records contains the following definitions.

3.1.1 The Type AdaTran_Node_Kind

The type AdaTran_Node_Kind is an enumerated type that is used to indicate the class of
any given IRep tree node. The definition is

type AdaTran_Node_Kind is (k_UNDEFINED,
k_EMPTY,
-- Primitive Node Classes
k_Boolean,
k_Character,
k_Float,
k_Integer,
k_String,
k_Symbol,
-- Structured Node Classes
k_ABORT,
k_ACCEPT,

k_WITH_ELEM),

Note that the names of the various node kinds are all prefixed with ‘k_.’ This avoids any
clashes with Ada reserved words. For example, ABORT and ACCEPT would class with
the reserved words ‘abort’ and ‘accept’ in Ada, unless we modified them somehow.

3.1.2 The Type AdaTran_Node

The type AdaTran_Node corresponds to the IRep tree nodes for Ada. It is implemented as
a pointer to a record, which contains all the attribute information for the node. Thus, we
have the definition

type AdaTran_Node_Implementation(Kind : AdaTran_Node_Kind) is
record

end record;
and the definition

type AdaTran_Node is access AdaTran_Node_Implementation;

Appendix B May 1992 6

3.1.3 The Type Seq_Of_AdaTran_Node

The type Seq_Of_AdaTran_Node corresponds to sequences of AdaTran nodes. It is cre-
ated by instantiating the generic package SEQ on the type AdaTran_Node. Thus, we have
the three definitions

package AdaTran_Node_Seqs is new SEQ(AdaTran_Node, Eq, Equal);
subtype Seq_Of_AdaTran_Node is AdaTran_Node_Seqs.Seq;

function New_Seq_Of_AdaTran_Node return Seq_Of_AdaTran_Node
renames AdaTran_Node_Seqs.New_Seq;

The generic package SEQ provides a set of routines for creating and manipulating linked
lists. Instantiating this generic package for the type AdaTran_Node, makes these opera-
tions available for use on nodes. In order to use these operations on sequences of AdaTr-
an_Node(s), it is necessary to insert the clause

use AdaTran_Node_Seqs;
in the declaration part of the unit that uses these routines.
The subtype Seq_Of_AdaTran_Node corresponds to sequences of nodes.

The function New_Seq_Of_AdaTran_Node returns the empty sequence.

3.1.4 The Functions Eq and Equal
In dealing with a complicated structures, like AdaTran_Node(s), it is sometimes necessary
to make a distinction between equivalence and identity in comparing nodes. The function
Eq, defined by

function Eq(x, y : AdaTran_Node) return Boolean;

returns true if and only if x and y are the same node. On the other hand, the function Equal,
defined by

function Equal(x, y : AdaTran_Node) return Boolean;

returns true if and cnly if x and y are equivalent. In this case we require that x and y be of
the same class and that all the corresponding attributes of x and y be Eq.

3.2 The Package Primitive_Node_Creation

The package Primitive_Node_Creation provides functions for constructing new nodes.
These consist of the generalized node creation functions, the functions for building primi-
tive nodes, and the functions for building structured nodes. A node, once created, can be
stored in the node data base (a table in memory that holds AdaTran nodes with symbols as

Appendix B May 1992 7

the keys). The user can even specify the name under which the node should be stored. This
data base is meant to provide unique names for all nodes that are attributes of two or more
other nodes. Many of the node creation functions have a parameter called ‘Label’ or
‘Node_Label,” which defaults to The_Symbe!_Undefined. If the user does not specify a
name, the system will generate one, if necessary.

3.2.1 The Generalized Node Creation Functions
The generalized node creation functions are

function Raw_AdaTran_Node(Kind : AdaTran_Node_Kind)
return AdaTran_Node;

and

function New_AdaTran_Node(Kind : AdaTran_Node_Kind;
Label : Symbol := The_Symbol_Undefined)
return AdaTran_Node;

The function Raw_AdaTran_Node simply creates a new, uninitialized instance of an
AdaTran_Node. It will rarely be used by the programmer, however, since it is at a very
low level and requires that the programmer devote considerable attention to low-level
details.

The function New_AdaTran_Node, on the other hand, will handle many of the low level
details necessary to maintain consistency in the node data base. Thus, it can be used more
effectively by the programmers of ENCORE tools. The optional parameter ‘Label,’ indi-
cates a name under which the node is to be stored in the node data base.

3.2.2 Functions for Building Primitive Nodes

The package Primitive_Node_Creation provides a number of functions for building prim-
itive, or scalar, nodes, such as integers, strings, booleans, etc. Many of these functions are
overloaded, in order to allow different types of parameters. Consider, for example, the
function Make_Integer. There are three different versions

function Make_Integer(X : Integer) return AdaTran_Node;
function Make_Integer(X : String) return AdaTran_Node;
function Make_Integer(X : A_String) return AdaTran_Node;

The first Make_Integer function allows one to build a node from an actual integer. The
second allows one to build a node from a string that represents an integer. Finally, the third
allows one to build a node from a pointer to a string.

The other creation functions for primitive nodes are Make_Boolean, Make_Character,
Make_Float, Make_String, and Make_Symbol.

Appendix B May 1992 8

There is also one function for building up sequences of symbol nodes. This is the function
defined by

function Make_Seq_Of_Symbol(S : Seq_Of_Symbol) return Seq_Of_AdaTran_Node;

This function accepts a sequence of actual symbols and builds a sequence of nodes, each
of type k_Symbol.

Functions for Building Structured Nodes

The functions for building structured nodes allow the user to build a complete node with
all the attributes in place. Some examples are

function Make_Abort(p_Tasks : Seq_Of_AdaTran_Node;
Node_Label : Symbol := The_Symbol_Undefined)
return AdaTran_Node;

function Make_Func_Spec(p_Body : AdaTran_Node;
p_Context : Seq_Of_AdaTran_Node;
p_Designator: AdaTran_Node;
p_Parameters : Seq_Of_AdaTran_Node;
p_Return_Type : AdaTran_Node;
Node_Label : Symbol := The_Symbol_Undefined)
return AdaTran_Node;

function Make_Others(Node_Label : Symbol := The_Symbol_Undefined)
retumn AdaTran_Node;.

The names of parameters that correspond to attribute values are all prefixed with ‘p_.’
This avoids any clashes with Ada reserved words. For example, several classes of node
contain an attribute called ‘type.” This would cause a conflict with the reserved word
‘type’ in Ada, unless we altered the name somehow.

3.3 The Package Primitive_AdaTran_Interface

The package Primitive_AdaTran_Interface provides routines for accessing and manipulat-
ing AdaTran_Nodes.

3.3.1 The Function Kind
The function Kind, defined by
function Kind(x : AdaTran_Node) return AdaTran_Node;

Appendix B May 1992 9

allows the user to query a node as to its class. Quite often the various ENCORE tools will
use a case-statement based on the result of Kind(x), then perform different operations
deperding on the actual kind of the node.

3.3.2 Accessing Primitive Nodes

Primitive nodes can’t be altered, so the only operation available is to retrieve the actual
primitive values from the nodes. For example, we can retrieve the integer value of an inte-
ger node. The actual functions are

function As_Boolean(N : AdaTran_Node) return Boolean;
function As_Character(N : AdaTran_Node) return Character;
function As_Float(N : AdaTran_Node) return Float;

function As_Integer(N : AdaTran_Node) return Integer;
function As_String(N : AdaTran_Node) return String;
function As_A_String(N : AdaTran_Node) return A_String;
function As_Symbol(N : AdaTran_Node) return Symbol;

The function As_A_String needs some additional comments. The type A_String is an
access type whose values are pointers to strings (A_String is described in the package
Basic_Strings). With string nodes, it is important to be able to view the string value of a
string node as either an actual string or as a pointer to a string. This is because the type
String in Ada is an unconstrained array type, which is inconvenient to use in some con-
texts.

Finally, there is a function defined by

function As_Seq_Of_Symbol(S : Seq_Of_AdaTran_Node)
return Seq_Of_AdaTran_Node;

This function takes a sequence of AdaTran_Node(s), all presumed to be of type
k_Symbol, and returns a sequence of Symbols. As such, it is the reverse of the function
Make_Seq_Of_Symbol, defined in the package Primitive_Node_Creation.

3.3.3 Accessing Structure Nodes

For each attribute name, there are two corresponding functions, a ‘Get_’ function and a
‘Set_’ function. The Get function retrieves the attribute of the given name, while the Set
function assigns a value to the attribute. Two examples are

Get_Type(N : AdaTran_Node) return AdaTran_Node;
Set_Type(N : AdaTran_Node; To_Be : AdaTran_Node);

and

Get_Declarations(N : AdaTran_Node) return Seq_Of_AdaTran_Node;
Set_Declarations(N : AdaTran_Node; To_Be : Seq_Of_AdaTran_Node);

Appendix B May 1992 10

The first two functions provide access to the ‘type’ attribute of any typed node, such as a
var_decl, const_decl, etc.

The last two functions provide access to the ‘declarations’ attribute for any node corre-
sponding to a scope. These include nodes of class pkg_spec, pkg_bdy, block, etc.

Appendix B May 1992

1

Appendix C

ADL Description of the Ada Internal
Representation

-- ADL Description of the Ada Internal Representation

module AdaTran is
-- Primitive Node Types
primitive Boolean;
primitive Character;
primitive Float;
primitive Integer;
primitive String;
primitive Symbol;

stub Empty;
stub Undefined;

-- Structured Classes
-- 2.8 pragmas
pragma =>
designator : Symbol,
parameters : seq of EXP_OR_ASSOCIATION;
EXP_OR_ASSOCIATION ::= EXP | association;
-- 3. declarations and types

-- 3.1 declarations

DECL ::= pragma | use_elem |
MULTIPLE_DESIGNATORS_ITEM | REP | SINGLE_DESIGNATOR_ITEM;

-- 3.2 objects and named numbers
MULTIPLE_DESIGNATORS_ITEM ::= num_decl | var_decl | const_decl;
EXP_OR_EMPTY ::=EXP | Empty;

SUBTYPE_INDICATION := constrained_reference REFERENCE;
num_decl =>
designators : seq of Symbol,

initial_value : EXP_OR_EMPTY,
referencers : seq of named_ref,

Appendix C May 1992 1

var_decl =>
constraints : seq of CONSTRAINT,
designators : seq of Symbol,
initial_value : EXP_OR_EMPTY,
referencers : seq of named_ref,
type : SUBTYPE_INDICATION;

I type : SUBTYPE_INDICATION;

const_decl =>
constraints : seq of CONSTRAINT,
designators : seq of Symbol,
initial _value : EXP_OR_EMPTY,
referencers : seq of named_ref,
type : SUBTYPE_INDICATION;

-- 3.3 types and subtypes
-- 3.3.1 type declarations
SINGLE_DESIGNATOR_ITEM ::= type_decl | subtype_decl;
type_decl =>
designator : Symbol,
info : TYPE_INFO,
referencer : direct_ref;
-- 3.3.2 subtype declarations
subtype_decl =>
base_type : SUBTYPE_INDICATION,
constraints : seq of CONSTRAINT,
designator : Symbol,
referencer : direct_ref;
-- 3.4 derived type defintions
TYPE_INFO ::= derived_type_info;
derived_type_info =>

base_type : SUBTYPE_INDICATION,
constraints : seq of CONSTRAINT;

Appendix C May 1992

-- 3.5 scalar types
TYPE_INFO ::= enumerated_type_info;

enumerated_type_info =>
values : seq of enumeration_literal;

enumeration_literal =>
base_type : SUBTYPE_INDICATION,
type :direct_ref,
value :SYMBOL_OR_CHARACTER;
SYMBOL_OR_CHARACTER ::= Symbol | Character;
-- 3.5.4 integer types
TYPE_INFO ::= integer_type_info;

integer_type_info =>
range : SIMPLE_RANGE;

-- 3.5.9 real types
TYPE_INFO ::= REAL_TYPE_INFO;
REAL_TYPE_INFO ::= float_type_info;
float_type_info =>
digits : EXP,
range : SIMPLE_RANGE_OR_EMPTY;
REAL_TYPE_INFO ::= fixed_type_info;
fixed_type_info =>
delta : EXP,
range : SIMPLE_RANGE_OR_EMPTY;
SIMPLE_RANGE_OR_EMPTY ::= SIMPLE_RANGE | Empty;
-- 3.6 array types
TYPE_INFO ::=array_type_info;
array_type_info =>
base_type : SUBTYPE_INDICATION,
ranges : seq of RANGE;

RANGE ::= discrete_range;

Appendix C May 1992

EETEE BN BN Il Ul N I Il I S EE T T O O W -

SIMPLE_RANGE ::= discrete_range;

discrete_range =>
base_type : SUBTYPE_INDICATION,
max : EXP,
min : EXP;

RANGE ::= index_constraint;

index_constraint =>
base_type : SUBTYPE_INDICATION,
max : EXP,
min : EXP;

RANGE ::= universal_index_range;
universal_index_range =>
base_type : SUBTYPE_INDICATION,
max :EXP,
min :EXP;
RANGE ::= universal_integer_range;
universal_integer_range =>
base_type : SUBTYPE_INDICATION,
max :EXP,
min :EXP;
RANGE ::= REFERENCE;
-- 3.7 record types
TYPE_INFO ::= record_type_info;
record_type_info =>

components : seq of component_decl,
discriminant : seq of component_decl;

MULTIPLE_DESIGNATORS_ITEM ::= component_decl
COMPONENT ::=component_decl | pragma;

component_decl =>
constraints : seq of CONSTRAINT,
designators : seq of Symbol,
initial_value : EXP_OR_EMPTY,
referencers : seq of named_ref,
type : SUBTYPE_INDICATION;

44

Appendix C May 1992

T EE T I I BN O I B I O OS5 S ST TS e s s s s

COMPONENT ::= null_component;
null_component =>;
COMPONENT ::= variant_part;
variant_part =>
discriminator : named_ref,
variants : seq of variant;
variant =>
choices : seq of CHOICE_OR_OTHERS,
components : seq of COMPONENT;
CHOICE_OR_OTHERS :=EXP| GENERAL_DISCRETE_RANGE | others;
others =>;
-- 3.8 access types
TYPE_INFO ::= pointer_type_info;

pointer_type_info =>
base_type : SUBTYPE_INDICATION;

-- 3.8.1 Incomplete Type Declarations
TYPE_INFO ::= TYPE_STUB;
TYPE_STUB ::= incomplete_type_info;
incomplete_type_info =>

completion : DIRECT. REF_OR_EMPTY,

discriminant : seq of component_decl;
TYPE_STUB ::= private_type_info;
private_type_info =>

completion : DIRECT_REF_OR_EMPTY,

discriminant : seq of component_decl;
TYPE_STUB ::= limited_private_type_info;
limited_private_type_info =>

completion : DIRECT_REF_OR_EMPTY,
discriminant : seq of component_decl;

Appendix C Msy 1992

— @ @whn $#— @ T R I A TN U P G A e e s

TYPE_INFO ::= type_completion_info;
type_completion_info =>

info : TYPE_INFO,

stub : DIRECT_REF_OR_EMPTY;
DIRECT_REF_OR_EMPTY ::= direct_ref | Empty;

-- 3.9 declarative parts
-- 4 names and expressions
-- 4.1 names

-- 4.1.1 indexed components

REFERENCE ::= indexed_ref;
indexed_ref =>
indices : seq of EXP,
representations : seq of REP,
target : EXP;

-- 4.1.2 slices

slice =>
range : GENERAL_DISCRETE_RANGE,
target : EXP; ;

GENERAL_DISCRETE_RANGE ::= constrained_reference | REFERENCE | SIM-
PLE_RANGE;

-- 4.1.3 selected components
REFERENCE ::= component_ref;
component_ref =>

component : EXP,
representations : seq of REP,
target : EXP;

-- 4.1.4 attributes
SIMPLE_RANGE ::= attribute;

attribute =>

Appendix C May 1992

designator : Symbol,
exp : EXP;

SIMPLE_RANGE ::= attribute_call;
attribute_call =>
attribute : attribute,
exp :EXP;
-- 4.2 literals
EXP ::=LITERAL,;
LITERAL := Boolean | Integer | Float | Symbol | Character | String;
-- 4.3 aggregates
LITERAL ::= aggregate;
aggregate =>
components : seq of ACTUAL_COMPONENT;
ACTUAL_COMPONENT ::= association | others_part | EXP;

others_part =>
exp : EXP;

-- 4.4 expressions
EXP ::= REFERENCE;
-- 4.4.B relations
EXP ::= membership;
membership =>
exp ' EXP,
op : MEMBERSHIP_OP,
set : discrete_range;

MEMBERSHIP_OP ::= in_op | not_in;

in_op =>;
not_in =>;

-- 4.5 operators and expression evaluation

Appendix C May 1992

r

-- See Function Calls

-- 4.6 type conversions
EXP ::=QUAL_CONYV;
QUAL_CONYV ::=conversion;
conversion =>
exp : EXP,
type : SUBTYPE_INDICATION;
-- 4.7 qualified expressions
QUAL_CONYV ::=qualified_expression;
qualified_expression =>
exp : EXP,
type : SUBTYPE_INDICATION;

-- 4.8 allocators

EXP ::= ALLOCATOR;
ALLOCATOR ::= uninitialized_allocator;

uninitialized_allocator =>
constraints : seq of CONSTRAINT,
object_type : SUBTYPE_INDICATION,
type : SUBTYPE_INDICATION;
ALLOCATOR ::= initialized_allocator;
initialized_allocator =>
constraints : seq of CONSTRAINT,
expr : qualified_expression,
type : SUBTYPE_INDICATION;
EXP ::= null_exp;
null_exp =>;

-- 5 Statements

STMT ::= pragma;
STMT ::= labeled_stmt;

Appendix C May 1992

labeled_stmt =>
labels : seq of Symbol,
referencers : seq of named_ref,
statement : STMT;

STMT ::= null_stmt;

null_stmt =>;

-- 5.2 assignment statement
STMT ::= assignment_stmt;
assignment_stmt =>

target : REFERENCE,
source : EXP;

-- 5.3 if statements

STMT ::=if_stmt;

if_stmt =>
then_part : then_clause,
else_parts : ELSES_OR_EMPTY;

then_clause =>

cond :EXP,

statements : seq of STMT,
ELSES_OR_EMPTY ::= elses_part | Empty;
elses_part =>

else_part : ELSE_CLAUSE_OR_EMPTY,

elsifs : seq of elsif_clause;
elsif_clause =>

cond :EXP,

statements : seq of STMT;
ELSE_CLAUSE_OR_EMPTY ::= else_clause | Empty;

else_clause =>
statements : seq of STMT,;

-- 5.4 case statements

STMT ::= case_stmt;

Appendix C May 1992

case_stmt =>
alternatives : seq of altern,
case_exp :EXP;

altern =>

choices : seq of CHOICE_OR_OTHERS,
statements : seq of STMT;

-- 5.5 loop statements

STMT ::= loop_stmt;
loop_stmt =>

iterator : ITERATOR,

label : Symbol,

referencer : direct_ref,
statements : seq of STMT;

ITERATOR ::= while_iter;

while_iter =>
condition : EXP;

ITERATOR ::= for_iter;

for_iter =>
init_and_end : GENERAL_DISCRETE_RANGE,
referencers : seq of named_ref,
variable : Symbol;

ITERATOR ::= reverse_iter;

reverse_iter =>
init_and_end : GENERAL_DISCRETE_RANGE,
referencers : seq of named_ref,
variable : Symbol,;

-- 5.6 block statements
STMT ::=block;
block => .
declarations : seq of DECL,

exception_handler : seq of altern,
label : Symbol,

Appendix C May 1992

10

referencer : direct_ref,
statements : seq of STMT;

-- §.7 exit_statements
STMT ::= exit_stmt;

exit_stmt =>
level : REFERENCE_OR_EMPTY,
when_condition : EXP_OR_EMPTY;,

REFERENCE_OR_EMPTY ::= REFERENCE | Empty;
-- 5.8 return statements

STMT ::=return_stmt;
return_stmt =>
value : EXP_OR_EMPTY;

-- 5.9 goto statements

STMT ::= goto_stmt;
goto_stmt =>
target : REFERENCE;

-- 6 subprograms
-- 6.1 subprogram declarations
SINGLE_DESIGNATOR_ITEM ::= func_spec;

func_spec =>
body : DIRECT_REF_OR_EMPTY,
context : seq of CONTEXT_ELEM,
designator : Symbol,
parameters : seq of FORMAL,
referencer : direct_ref,
return_type : direct_ref;

SINGLE_DESIGNATOR_ITEM ::= proc_spec;

proc_spec =>
body :DIRECT_REF_OR_EMPTY,
context : seq of CONTEXT_ELEM,
designator : Symbol,
parameters : seq of FORMAL,

Appendix C May 1992

1

referencer : direct_ref;

-- 6.1.C formal part
FORMAL ::=in_formal | out_formal | inout_formal;

in_formal =>
designators : seq of Symbol,
initial_value : EXP_OR_EMPTY,
referencers : seq of named_ref,
type : SUBTYPE_INDICATION;

FORMAL ::= out_formal;

out_formal =>
designators : seq of Symbol,
referencers : seq of named_ref,
type : SUBTYPE_INDICATION;

FORMAL ::= inout_formal;
GENERIC_PARAMETER ::= inout_formal;
inout_formal =>

designators : seq of Symbol,

referencers : seq of named_ref,

type : SUBTYPE_INDICATION;

-- 6.3 subprogram bodies
SINGLE_DESIGNATOR_ITEM ::= func_bdy;

func_bdy =>
context : seq of CONTEXT_ELEM,
declarations : seq of DECL,
designator : Symbol,
exception_handler : seq of altern,
parameters : seq of FORMAL,

referencer : direct_ref,
return_type : direct_ref,
spec : DIRECT_REF_OR_EMPTY,

statements : seq of STMT:
SINGLE_DESIGNATOR_ITEM ::= proc_bdy;

proc_bdy =>
context : seq of CONTEXT_ELEM,
declarations : seq of DECL,
designator : Symbol,

Appendix C May 1992

exception_handler : seq of altern,
parameters : seq of FORMAL,
referencer : direct_ref,

spec : DIRECT_REF_OR_EMPTY,
statements : seq of STMT;

-- 6.4 subprogram calls
STMT ::= proc_call;
proc_call =>
parameters : seq of EXP_OR_ASSOCIATION,
proc : REFERENCE;
EXP ::= function_call;
function_call =>

function : REFERENCE,
parameters : seq of EXP_OR_ASSOCIATION;

-- 7 packages

-- 7.1 package structure

SINGLE_DESIGNATOR_ITEM ::= pkg_spec;

pkg_spec =>
body : DIRECT_REF_OR_EMPTY,
context : seq of CONTEXT_ELEM,
declarations : seq of DECL,
designator : Symbol,
private_declarations : seq of DECL,
referencer : direct_ref;

SINGLE_DESIGNATOR_ITEM ::= pkg_bdy;

pkg_bdy =>
context : seq of CONTEXT_ELEM,
declarations : seq of DECL,
designator : Symbol,
exception_handler : seq of altern,
referencer : direct_ref,
spec : DIRECT_REF_OR_EMPTY,
statements : seq of STMT;

Appendix C May 1992

13

-- 7.4 private type and deferred constant declarations
MULTIPLE_DESIGNATORS_ITEM ::= deferred_const_decl;
deferred_const_decl =>

decl : const_decl,
designators : seq of Symbol,

referencers : seq of named_ref,
type : SUBTYPE_INDICATION;

-- 8 visibility rules
-- 8.4 use clauses

DECL ::= use_elem;
CONTEXT_ELEM ::= use_elem;

use_elem =>
items : seq of Symbol;

-- 8.5 renaming declarations
MULTIPLE_DESIGNATORS_ITEM ::= exception_rename;
exception_rename =>

designators : seq of Symbol,

item : REFERENCE;
SINGLE_DESIGNATOR_ITEM ::= func_rename;
func_rename =>

designator : Symbol,

item : REFERENCE,

parameters : seq of FORMAL,

referencer : direct_ref,

return_type : direct_ref;
MULTIPLE_DESIGNATORS_ITEM ::= object_rename;
object_rename =>

designators : seq of Symbol,

item : REFERENCE;
SINGLE_DESIGNATOR_ITEM ::= pkg_rename;

pkg_rename =>

Appendix C May 1992

I designator : Symbol,
item : REFERENCE,
referencer : direct_ref;

SINGLE_DESIGNATOR_ITEM ::= proc_rename;

proc_rename =>
designator : Symbol,
item : REFERENCE,
parameters : seq of FORMAL,
referencer : direct_ref;

-- 9 tasks

-- 9.1 task specifications and task bodies
SINGLE_DESIGNATOR _ITEM ::= task_type_decl;

task_type_decl =>
designator : Symbol,
referencer : direct_ref,
spec : DIRECT_REF_OR_EMPTY;

SINGLE_DESIGNATOR_ITEM ::= task_spec;
TYPE_INFO ::= task_spec;
task_spec =>
body : DIRECT_REF_OR_EMPTY,
context :seq of CONTEXT_ELEM,
declarations : seq of DECL,
designator : Symbol,
referencer : direct_ref;

SINGLE_DESIGNATOR_ITEM ::= task_bdy;

task_bdy =>
context : seq of CONTEXT_ELEM,
declarations : seq of DECL,
designator : Symbol,
exception_handler : seq of altern,
referencer : direct_ref,
spec : DIRECT_REF_OR_EMPTY,
statements : seq of STMT;

-- 9.5 entries, entry calls and accept statements

Appendix C May 1992

SINGLE_DESIGNATOR_ITEM ::= entry;

entry =>
designator : Symbol,
parameters : seq of FORMAL,
range :RANGE_OR_EMPTY,
referencer : direct_ref;

RANGE_OR_EMPTY ::= RANGE | Empty;

entry_call =>
entry :direct_ref,
index :EXP_OR_EMPTY,
parameters : seq of EXP_OR_ASSOCIATION;

STMT ::= accept;

accept =>
entry : REFERENCE,
index :EXP_OR_EMPTY,
parameters : seq of FORMAL,
referencer : direct_ref,
statements : seq of STMT;

-- 9.6 delay statements, duration and time

delay =>
exp : EXP;

-- 9.7 select statements

-- 9.7.1 selective waits
select =>
select_clauses : seq of SELECT_CLAUSE_ELEM,
statements : seq of STMT;
SELECT_CLAUSE_ELEM ::= pragma | select_clause;
select_clause =>
cond :EXP,
statements : seq of STMT,;
STMT ::= terminate;

terminate => ;

Appendix C May 1992

16

-- 9.7.2 conditional entry calls
STMT ::= ENTRY_STMT,;
ENTRY_STMT ::= cond_entry;

cond_entry =>
failure_statements : seq of STMT,
success_statements : seq of STMT;

-- 9.7.3 timed entry calls
ENTRY_STMT ::= timed_entry,

timed_entry =>
failure_statements : seq of STMT,
success_statements : seq of STMT;

-- 9,10 abort statements
STMT ::= abort;

abort =>
tasks : seq of REFERENCE;

-- 10 program structure and compilation issues

-- 10.1 compilation units - library units
UNIT_DECL ::= GENERIC_INSTANTIATION ACTUAL_SPEC ACTUAL_BODY,;

ACTUAL_SPEC ::=
func_spec |
func_instantiation |
generic_func_spec |
generic_pkg_spec |
generic_proc_spec |
pkg_spec|
pkg_instantiation |
pkg_spec|
proc_spec |
proc_instantiation |
task_spec;

ACTUAL_BODY ::=
func_bdy |

Appendix C May 1992

17

| func_instantiation_bdy |
generic_func_bdy |
generic_pkg bdy |
generic_proc_bdy |
pkg_bdy |
pkg_instantiation_bdy |
proc_bdy |
proc_instantiation_bdy |
task_bdy;

CONTEXT_ELEM ::= with_elem;
--CONTEXT_ELEM ::= use_elem;

with_elem =>
items : seq of Symbol;

-- 10.2 subunits of compilation units
SINGLE_DESIGNATOR_ITEM ::= stub;

stub =>

designator : Symbol,

referencer : direct_ref,

spec : DIRECT_REF_OR_EMPTY,
subunit : DIRECT_REF_OR_EMPTY;

SINGLE_DESIGNATOR_ITEM ::= subunit;

subunit =>

body :DIRECT_REF_OR_EMPTY,
designator : Symbol,

referencer : direct_ref,

spec : DIRECT_REF_OR_EMPTY,
stub : DIRECT_REF_OR_EMPTY;

-- 11 exceptions

-- 11.1 exception declarations

MULTIPLE_DESIGNATORS_ITEM ::= exception_decl;

exception_decl =>
designators : seq of Symbol,
referencers : seq of named_ref;

Appendix C May 1992

-- 11.2 exception handlers

-- 11.3 raise statements
STMT ::=raise_stmt;

raise_stmt =>
exception : named_ref;

-- 12 generic program units

GENERIC_UNIT := generic_func_spec | generic_proc_spec |
generic_func_bdy | generic_proc_bdy |
generic_pkg_spec;

GENERIC_PARAMETER ::= generic_type_param |
in_formal |
inout_formal |
GENERIC_SUBPROGRAM_PARAM,;

SINGLE_DESIGNATOR_ITEM ::= generic_type_param,;

generic_type_param =>
designator : Symbol,
info : GENERIC_TYPE_INFO,
referencer : direct_ref;

GENERIC_TYPE_INFO ::= generic_discrete_info | generic_integer_info |
generic_float_info | generic_fixed_info |
TYPE_INFO;

generic_discrete_info => ;
generic_integer_info => ;
generic_float_info => ;
generic_fixed_info =>;

GENERIC_SUBPROGRAM_PARAM ::= generic_func_param | generic_proc_param;

generic_func_param =>
default_subprogram : SYMBOL_BOX_SUBPROGRAM_OR_EMPTY,
designator : Symbol,
parameters : seq of FORMAL,
referencer : direct_ref,
return_type : direct_ref;

Appendix C May 1992

19

- W U W -

generic_proc_param =>
default_subprogram : SYMBOL_BOX_SUBPROGRAM_OR_EMPTY,
designator : Symbol,
parameters : seq of FORMAL,
referencer : direct_ref;

SYMBOL_BOX_SUBPROGRAM_OR_EMPTY ::= box_subprogram | Empty | Sym-
bol;

box_subprogram =>;
SINGLE_DESIGNATOR_ITEM ::= generic_func_spec;

generic_func_spec =>
body : DIRECT_REF_OR_EMPTY,
context :seq of CONTEXT_ELEM,
designator : Symbol,
g_parameters : seq of GENERIC_PARAMETER,
parameters : seq of FORMAL,
referencer : direct_ref,
return_type : direct_ref;

SINGLE_DESIGNATOR_ITEM ::= generic_proc_spec;

generic_proc_spec =>
body : DIRECT_REF_OR_EMPTY,
context :seq of CONTEXT_ELEM,
designator : Symbol,
g_parameters : seq of GENERIC_PARAMETER,
parameters : seq of FORMAL,
referencer : direct_ref;

SINGLE_DESIGNATOR_ITEM ::= generic_pkg_spec;

generic_pkg_spec =>

body : DIRECT_REF_OR_EMPTY,
context : seq of CONTEXT_ELEM,
declarations : seq of DECL,

designator : Symbol,

£_parameters : seq of GENERIC_PARAMETER,
private_declarations : seq of DECL,
referencer : direct_ref;

SINGLE_DESIGNATOR_ITEM ::= generic_func_bdy;

generic_func_bdy =>

Appendix C May 1992

context : seq of CONTEXT_ELEM,
declarations : seq of DECL,

designator : Symbol,

exception_handler : seq of altern,

g parameters : seq of GENERIC_PARAMETER,
parameters : seq of FORMAL,

referencer : direct_ref,
return_type : direct_ref,
spec : DIRECT_REF_OR_EMPTY,

statements : seq of STMT;
SINGLE_DESIGNATOR_ITEM ::= generic_proc_bdy;

generic_proc_bdy =>
context : seq of CONTEXT_ELEM,
declarations : seq of DECL,
designator : Symbol,
exception_handler : seq of altern,
g_parameters : seq of GENERIC_PARAMETER,
parameters : seq of FORMAL,
referencer : direct_ref,
spec : DIRECT_REF_OR_EMPTY,
statements : seq of STMT,;

SINGLE_DESIGNATOR_ITEM ::= generic_pkg_bdy;

generic_pkg_bdy =>
context : seq of CONTEXT_ELEM,
declarations : seq of DECL,
designator : Symbol,
exception_handler : seq of altern,
referencer : direct_ref,
spec : DIRECT_REF_OR_EMPTY,
statements : seq of STMT,;

-- 12.3 generic instantiation

GENERIC_ACTUAL_PARAMETER := EXP; -- for now

SINGLE_DESIGNATOR_ITEM ::= func_instantiation;
GENERIC_INSTANTIATION ::= func_instantiation;

func_instantiation =>
body : DIRECT_REF_OR_EMPTY,
context :seq of CONTEXT_ELEM,
designator : Symbol,

Appendix C May 1992

21

g actuals : seq of GENERIC_ACTUAL_PARAMETER,
instance_of : REFERENCE,

parameters : seq of FORMAL,

referencer : direct_ref,

return_type : direct_ref,

spec : DIRECT_REF_OR_EMPTY;

SINGLE_DESIGNATOR_ITEM ::= proc_instantiation;
GENERIC_INSTANTIATION ::= proc_instantiation;

proc_instantiation =>
body : DIRECT_REF_OR_EMPTY,
context : seq of CONTEXT_ELEM,
designator : Symbol,
g actuals : seq of GENERIC_ACTUAL_PARAMETER,
instance_of : REFERENCE,
parameters : seq of FORMAL,
referencer : direct_ref,
spec : DIRECT_REF_OR_EMPTY;

SINGLE_DESIGNATOR_ITEM ::= pkg_instantiation;
GENERIC_INSTANTIATION ::= pkg_instantiation;

pkg_instantiation =>
body : DIRECT_REF_OR_EMPTY,
context : seq of CONTEXT_ELEM,
designator : Symbol,
g actuals : seq of GENERIC_ACTUAL_PARAMETER,
instance_of : REFERENCE,
referencer : direct_ref,
spec : DIRECT_REF_OR_EMPTY;

SINGLE_DESIGNATOR_ITEM ::= func_instantiation_bdy;
GENERIC_INSTANTIATION ::= func_instantiation_bdy;
func_instantiation_bdy =>

context : seq of CONTEXT_ELEM,

declarations : seq of DECL,

designator : Symbol,

exception_handler : seq of altemn,

g_actuals : seq of GENERIC_ACTUAL_PARAMETER,

instance_of : REFERENCE,

referencer : direct_ref,

spec : DIRECT_REF_OR_EMPTY,

statements : seq of STMT,;

SINGLE_DESIGNATOR_ITEM ::= proc_instantiation_bdy;
GENERIC_INSTANTIATION ::= proc_instantiation_bdy;

Appendix C May 1992

proc_instantiation_bdy =>
context : seq of CONTEXT_ELEM,
declarations : seq of DECL,
designator : Symbol,
exception_handler : seq of altern,
g_actuals : seq of GENERIC_ACTUAL_PARAMETER,
instance_of : REFERENCE,
referencer : direct_ref,
spec : DIRECT_REF_OR_EMPTY,
statements : seq of STMT;

SINGLE_DESIGNATOR_ITEM ::= pkg_instantiation_bdy;
GENERIC_INSTANTIATION ::= pkg_instantiation_bdy;

pkg_instantiation_bdy =>
context : seq of CONTEXT_ELEM,
declarations : seq of DECL,
designator : Symbol,
exception_handler : seq of altern,
g_actuals : seq of GENERIC_ACTUAL_PARAMETER,
instance_of : REFERENCE,
referencer : direct_ref,
spec : DIRECT_REF_OR_EMPTY,
statements : seq of STMT;

-- 13 representation clauses and implementation dependent features

-- 13.1 representation clauses
REP ::=record_rep | EXP_REP;
type_attribute =>
designator : Symbol,
representations : seq of REP,
type : direct_ref;
(ADL EXP_REP => exp EXP)
(ADL EXP_REP := address_rep length_clause enumeration_rep)-- 13.3
-- 13.2 length clauses
EXP_REP ::= length_clause;

length_clause =>
exp :EXP, -- exp is a simple expression

Appendix C Msy 1992

target : REFERENCE_OR_TYPE_ATTRIBUTE;
-- 13.3 enumeration representation clauses

EXP_REP ::= enumeration_rep;
enumeration_rep =>
exp :EXP, --expisanaggregate
target : REFERENCE_OR_TYPE_ATTRIBUTE;

-- 13.4 record representation clauses

ALIGNMENT_OR_EMPTY ::= alignment | Empty,
alignment =>
at_mod : EXP_OR_EMPTY,

pragmas : seq of pragma;

REP ::= record_rep;

record_rep =>
alignment : ALIGNMENT_OR_EMPTY,
component_reps : seq of COMPONENT_REP_ELEMENT,
target : REFERENCE_OR_TYPE_ATTRIBUTE;

COMPONENT_REP_ELEMENT ::= component_rep | pragma;

component_rep =>
at_exp :EXP,
designator : Symbol,
range :RANGE;

-- 13.5 address clauses
EXP_REP ::= address_rep;
address_rep =>
exp :EXP,
target : REFERENCE_OR_TYPE_ATTRIBUTE;
REFERENCE_OR_TYPE_ATTRIBUTE ::= REFERENCE | type_attribute;
type_attribute =>
designator : Symbol,
representations : seq of REP,
type : direct_ref;
-- 13.8 machine code insertions

machine_code =>

Appendix C May 1992

24

exp : EXP,
type : REFERENCE;

-- 14 input-output
-- X.1 Constraints

CONSTRAINT ::= RANGE_CONSTRAINT | array_constraint | Empty;
RANGE_CONSTRAINT ::= EXP | RANGE;

array_constraint =>
element_constraints : seq of CONSTRAINT,
range_constraints : seq of RANGE;
-- X.1 References

REFERENCE ::= direct_ref named_ref indexed_ref
component_ref object_ref pointer_deref)

REFERENCE ::= direct_ref;
direct_ref =>

representations : seq of REP,

target : DECL_OR_STMT; -- points to single decls
DECL_OR_STMT ::= DECL | STMT,;

REFERENCE ::= object_ref;

object_ref =>
representations : seq of REP,
target : EXP;

REFERENCE ::= named_ref;

named_ref =>
designator : Symbol,
representations : seq of REP,
target : REFERENCE;

REFERENCE ::= pointer_deref;
pointer_deref => -- the ".all" construct

representations : seq of REP,
target : REFERENCE;

Appendix C May 1992

EXP_OR_ASSOCIATION ::= association;
ACTUAL_COMPONENT ::= association;
association =>

names : seq of EXP,

value : EXP;

GENERAL_DISCRETE_RANGE ::= constrained_reference;
SUBTYPE_INDICATION ::= constrained_reference;

constrained_reference =>
constraint : CONSTRAINT,
target : REFERENCE;

unconstrained =>
base_type : SUBTYPE_INDICATION;

end module;

Appendix C May 1992

Appendix D
Introduction to ENCORE Symbol Table

Introduction to the ENCORE Symbol Table

1. The Purpose of the ENCORE Symbol Table

The purpose of the ENCORE Symbol Table is to allow the various tools in ENCORE to
access definitions in Ada programs within the context of particular scopes.

Some goals in the symbol table design were:

1. The symbol table should be incrementally updatable. One should be able to add,
remove, or replace symbol table entries at any time, not just when the program is being
read in initially.

2. From any point in any scope of the program, the symbol table should appear logically
the same as if one were processing the Ada code at that point in the program.

3. Any tool that works on the IRep should be able to access the symbol table.

4. More than one tool should be able to access the symbol table simultaneously, even
within multiple scopes.

1.1 Basic Definitions

Symbol tables are used to store information that can be referenced from more than one
point in a program. Each item of information in a symbol table consists of two parts, a
‘key,” which gives a name to the item, and a ‘value,’ which gives the actual information.
Adding the item with key ‘k’ and value ‘v’ to a symbol table is called storing the value ‘v’
under the key ‘k.’

Some of symbol table terminology has been used with slightly different meanings in the
current literature. This report will adopt the following meanings for the common symbol
table terms.

1. The phrase ‘the symbol table’ means the entire symbol table structure associated with a
particular Ada program.

2. The non-specific term ‘symbol table’ will denote a table of key/value pairs. The keys
will correspond to identifiers or characters in Ada, while the values will correspond to
definitions in Ada. For flexibility in modifying Ada programs, the values will be refer-
ences (nodes of type k_DIRECT_REF or k_NAMED_REF) rather than actual defini-
tions.

3. The term ‘scope’ will mean a symbol table associated with a segment of a particular
Ada program unit. Thus, a scope could hold information about a specification, a private
part, or a body.

4. A ‘search’ is an object that is used for accessing symbol tables. A search object
includes all the local and nesting information necessary for searching through the sym-
bol table for an Ada program.

5. The ‘base table’ of a search object indicates the scope in which searching will start.

Appendix D May 1992 | 1

6. Since there can be several entries with the same key in the symbol table for an Ada pro-
gram, it is necessary to keep track of which entries have been found and which are left
to search. The ‘search cursor’ keeps track of this information.

7. One is said to be ‘in’ a particular scope if the base table of the search object corre-
sponds to that particular scope.

1.2 A Simplified View of the Symbol Table

The various symbol table packages offer the programmer a great deal of power and flexi-
bility; however, most programmers of ENCORE tools will only be interested in a rela-
tively small set of operations. These include:

* determining the current scope,

e creating a new scope within a given scope,

¢ entering a previously created scope,

* leaving a given scope (returning to the parent scope),

e entering the scope associated with a given declaration,

e retrieving the local entry (or entries) associated with a given key in a given scope, and

* retrieving the entry (or entries) associated with a given key, visible in the given scope
(i.e., those entries that are either in the local scope, in any of the parent scopes, or made
visible via ‘with’ or ‘use’ clauses).

e adding an entry to a given scope,
¢ removing an entry from a given scope,

 replacing an entry in a given scope with another entry,

These operations are provided in the package Parser_Symbol_Table. The next sections
discuss them in more detail.

1.3 Determining the Current Scope
The routine
function Current_Scope return Symbol_Table;

returns the current table under consideration.

1.4 Creating a New Scope
To create a new scope, the programmer invokes the following routine:

procedure New_Scope(name);

Appendix D May 1992 2

where ‘name’ is the name of the Ada program unit with which the new scope is to be asso-
ciated. This procedure creates a symbol table with the given name and assigns the current
scope as the parent table of the new table. It then enters the newly created scope. For
example, suppose procedure P contains a subprocedure P1, Suppose one is currently in the
scope of P. In order to create the symbol table for P1, one would call New_Scope with the
designator of P1 as the parameter. This would create a symbol table for P1, the would
place the search cursor in the scope of this new table.

1.5 Changing the Current Scope

In addition to the New_Scope routine, there are three routines for entering a previously
defined scope. These are

procedure Enter_Scope(k);
procedure Leave_Scope;
procedure Enter_Associated_Scope(n);

The procedure Enter_Scope is used for entering a previously defined subscope of the cur-
rent scope. In this procedure ‘k’ is the name of the scope being entered. This routine sim-
ply enters the given scope.

The procedure Leave_Scope simply enters the parent scope of the current scope; thus, a
call to Enter_Scope, followed by a call to Leave_Scope, will result in the current scope
being the original scope.

The procedure Enter_Associated_Scope is used for entering the scope associated with a
given Ada program unit. The parameter ‘n’ is not a symbol key but, rather, an AdaTran
node that corresponds to a particular Ada program unit. The function Enter_Associated_-
Scope allows the user to go directly to a given scope, without having to go up and down a
tree of nested scopes. One example where this is important is searching through the ‘used’
units of a given scope.

For example, suppose one wishes to enter the scope of a particular compilation unit. The
parameter ‘n’ corresponds to the unit with which the scope is associated.

1.6 Retrieving Symbol Table Entries

Logically, retrieval of symbol table entries should follow the visibility rules of Ada. This
means that the retrieval process generally should first search through the local scope, then
the parent scopes (in order), the through the ‘with’-ed units, then through the scopes of the
‘used’-units. Furthermore, there are times when a tool may wish to look just at entries in
the local segment of the current unit (for example just in the ‘body’, the ‘private’ part, or
the ‘specification’). At other times a given tool may be interested in searching through all
parts of the current scope but not in searching through any of the parent scopes.

Appendix D May 1992 3

In Ada there can be more than one declaration with a given key visible at a given point in
the program. This is the case, for example, with overloaded subprograms. In order to deal
with multiple visible declarations with the same name, we have introduced the notion of a
‘search cursor’ that keeps track of the current position in a particular search through a
symbol table. Most of the retrieval routines will have both a ‘First_’ and a ‘Next_’ ver-
sion. The function whose name starts with ‘First_’ will find the first definition correspond-
ing to a given key, starting with the given table. The function whose name starts with
‘Next_’ will find the first definitions corresponding to the given key, past the cursor posi-
tion of the last retrieval.

One final note. The functions for retrieving entries all use the parameter ‘k,” which repre-
sents the search key. The type of ‘k’ has not been specified. This is because these functions
are all overloaded with respect to ‘k,” with ‘k’ being an AdaTran_Node in the one case and
‘k’ being a Symbol in the other case. In the case where ‘k’ is an AdaTan_Node, ‘k’ must
be of type k_Symbol or k_Character. This is to allow enumeration literals, some of which
can be characters, to be entered in the symbol table. Since most keys will be symbols, and
since many tools will deal exclusively with keys that are symbols, it is useful to overload
the retrieval functions to allow symbols themselves, rather than just symbol nodes, as
keys.

1.7 The General Search Process

The general search process is to search for all visible definitions corresponding to a given
key. This facility is provided by the functions

function Get_First_Entry(k) return AdaTran_Node;
function Get_Next_Entry(k) return AdaTran_Node;

The function Get_First_Entry finds the first entry with key ‘k’ visible in the current scope,
while Get_Next_Entry finds the first visible entry with the given key past the current
search cursor position. The functions Gei_First_Entry and Get_Next_Entry will both
search through all definitions visible from the given table, whether in the local scope, par-
ent scopes, ‘with’-ed units, or ‘used’-units.

1.8 The Local Search Process

To search locally in a given scope segment, such as a specification, a body, or a private
part, one uses the functions.

function Get_First_Local_Entry(k) return AdaTran_Node.
function Get_Next_Local_Entry(k) return AdaTran_Node.

These work similarly to Get_First_Entry and Get_Next_Entry, except that the search
never goes beyond the current segment.

Appendix D May 1992 4

1.9 The Unit Search Process

There are times when the user wishes to limit searching to the various segments of an Ada
unit. For example, one might begin a search in the body of a package and be only inter-
ested in those definitions that occur in the body, private part, and specification. This facil-
ity is provided by the functions

function Get_First_Unit_Entry(k) return AdaTran_Node;
function Get_Next_Unit_Entry(k) return AdaTran_Node;

1.10 Modifying a Symbol Table
The basic routines for modifying a symbol table are

procedure Add_Entry(k, value);
procedure Remove_Entry(k, value);
procedure Replace_Entry(k, old_node, new_node);

These three routines only affect the current scope.

The procedure Add_Entry simply adds the entry whose key is given by the parameter ‘k’
and whose value is given by the parameter ‘value’ to the current scope. The procedure
Remove_Entry deletes the entry with key ‘k’ and value ‘value’ from the current scope.
Finally, the procedure Replace_Entry substitutes the value given by ‘new_node’ for that
given by ‘old_node,’ under the key given by ‘k.’

2. The Underlying Symbol Table Mechanism

A complete discussion of the symbol table mechanism, in all its generality, is beyond i+ ¢
scope of this report. This section merely points out some of the novel features of the sym-
bol table mechanism.

2.1 The Building Blocks for the Symbol Table Mechanism
The following Ada packages make up the symbol table mechanism:

Associations
Low_Level_Symbol_Table_Definitions
Symbol_Table_Functions
Search_Functions

2.2 The Low Level Packages.

The packages Associations and Low_Level_Symbol_Table_Definitions provide the basic
definitions used by all the other symbol table packages. In particular, they provide the def-
initions for the data types ‘Symbol_Table’ and ‘Search,” which are basic to all the other
packages.

Appendix D May 1992 5

2.3 The Package ‘Symbol_Table_Functions’

The package Symbol_Table_Functions provides facilities for

e creating new symbol tables,

¢ associating symbol tables with program units,

¢ associating symbol tables with their parent and descendant tables, and

¢ associating symbol tables with their corresponding ‘with’ and ‘use’ clauses.

2.4 The Package ‘Search_Functions’

The package Search_Functions forms the heart of the symbol table mechanism. It pro-
vides the mechanism for setting up and manipulating a ‘search, on the symbol table for a
given Ada program. This includes facilities for

e creating new searches,

setting the base (or starting) table for a search,

¢ setting the mode (LOCAL, GLOBAL, etc.) of a search,

* handling the nesting mechanism for a search,

* setting the search key for a search,

* retrieving symbol table entries associated with a given search,

* adding, removing, and replacing entries in the base table of a given search,

Note that the word ‘search’ in this context refers to the actual Ada data type ‘search,’

which is a type of data object set up to support multiple searches through the symbol table
of an Ada program.

One final remark. Most tool builders will not use the packages Symbol_Table_Functions
and Search_Functions directly. Instead, they will use these packages via a simplified inter-
face, such as that provided by the package Parser_Symbol_Table.

Appendix D May 1992 6

Appendix E
SRE/ESL Internal Representation

ELEMENTARY STATEMENT LANGUAGE
INTERNAL REPRESENTATION

MEMO 2 (REVISED)

NAVSWC CONTRACT NO. N60921-90-C-0298

Deliverable Item #0003 - A003

COMPUTER COMMAND AND CONTROL COMPANY
2300 CHESTNUT STREET STREET
PHILADELPHIA, PA 19103

Copyright (@) 1991 Computer Command and Control Company, as an unpublished work.

The contents of this document constitute valuable trade secrets, unpublished works protected
by copyright, and other confidential and proprictary Information; all rights reserved.

Used by pu rmission of Conputer Cammand and Control Campany, Apnl 23, 1992

/
4
Elementary Smtement Languages . Memo 2
TABLE OF CONTENTS

1. INTRODUCTIONccccevceescsacecnsece 1
2. DATA STRUCTURE OF STATEMENT AND

EXPRESSION NODE IN THE PROGRAM TREE .. 1
2.1. DATA STRUCTURE OF THE PROGRAM TREE

STATEMENT NODES ssvccecssssessnna 1
2.1.1. LANGUAGE...... e 3
2.1.2, STATEMENT TYPE tesessesescssens 3
2.1.3. AUXILIARY eesssessaveccsscesssaccnnnane 3
2.14. ENCODE1 ANDENCODE2......cc000eecccccces . 4
2.1.5. STRUCTUREPOINTERScccc0eteecccccccens 5
2.1.6. LABEL_POINTERccvvueeenrennnccrsonnns . 5
2.1.7. EXPRESSIONPOINTERScc00et0enecsveans . 5
2.2, DATA STRUCTURE OF EXPRESSION NODES 6
2.2.1. EXPRESSIONTYPE cecscecscssscrrsacenne 7
2.2.2. POINTERS TO BROTHER EXPRESSION 7
2.2.3. NUMBER OF DESCENDANTS......... cesesessee 7
2.24. POINTERS TO DESCENDANTScccccveeenees 8
2.2.5. NUMBER OF CHARACTERS INSTRING 8
2.2.6. STRINGcc0ee cescassce tescessssssse 8
3. EXECUTABLE ST ATEMENTS evrvccsssessesasans 9
KR B CONDITIONALBLOCKccv0vennes tesscnses 10
3.2, LOOPBLOCK...... teccectecnssssessssssesanne 11
3.3. ASSIGNMENT STATEMENTccov00veccncnces 12
34. PROCEDURECALLccoceteteeccancacannns 12
35. MESSAGE STATEMENTScccc0eteevccsccaas 13
3.6. INPUT/OUTPUT ..ccoveeeecceccascocscscsncanne 13
3.7. INPUT/OUTPUT AUXILIARY STATEMENT 13
38 CONTEXT STATEMENTSccccecevercncsnce . 13
39 CONTROL TRANSFERccccteettscncscnncans 14
4. DECLARATION STATEMENTSccceceeeees . 16
4.1 PROGRAM T TYPE ...cvcceeteevsaccccns eosscene . 17
4.2 STRUCTURETYPEoc0veevtececscrnnnsnnne . 17
4.3 VARIABLE TYPE sesesasasssssanscans 18
44 PROGRAMUNITcc0000.. cesesece veesenans . 18
4.5 STRUCTURE DECLARATION cessens 20
4.6 VARIABLE esssscasee csecsccssssecsssonses 21
4.7 FILEcc000ee0e ceacersase tesesssssscansanse 21
4.8 COMMENT DECLARATION seesecaas ceeas 21
s. EXPRESSIONNODESccccc00ctveevscsnccnes 22
5.1 TYPES OF EXPRESSIONNODESccce00ece.. 22
5.2 FIELDS IN EACH EXPRESSIONNODE 23
53 TREE CONSTRUCTION EXAMPLES k) |
APPENDIX: ESL STATEMENTCODEccoc0veveetncenne 39

Prepared Under Contract No. N60921-90-C—0298

Used by pc rmission of Computer Command and Control Company, Apri 23,1992

Elementary Statement Languages ' ! Memo 2

1 INTRODUCTION

This memo describes the program tree for storing Elementary Statement Language (ESL)
programs in a tree structure in memory. Block statements are nodes that have branches which
fan—out to their constituent statements. Terminal statement form the leaves of the tree. Each
statement is also the root of a subtree of expression nodes that contain the arguments of the
statement. This memo consists of four sections. Section 2 discusses the statement and
expression node structures. Section 3 describes the structure for storing executable statements.
Section 4 describes the node structure for storing ESL declaration statements. Section 5
discusses the expression nodes structure. The ESL tree is used as an intermediary in translation
of source real-time programming languages into Ada. A source language program is translated
first to ESL. ESL has semantics similar to those of Ada. However, the ESL tree is reorganized
and modified prior to translation to Ada.

2. DATA STRUCTURE OF STATEMENT AND EXPRESSION NODE IN THE
PROGRAM TREE
2.1. DATA STRUCTURE OF THE PROGRAM TREE STATEMENT NODES

This subsection describes the node structure of statements. The statement node structure is
shown ‘below in MODEL, C, and Ada in a structure of type node.

Prepared Under Contract No. N60921-90-C-0298 L

Used by pe mission of Comguter Command and Control Company; April 23,1992

Elementary Statement Languages e Memo 2

1 nods 1s type socessed by NodePtr, i
language is fld(char 1), /*ESL, EESL%/ ’
atat_type is fld(bin fix), /*stat type*/

atmt_num 1s fld(bin fix), /*stat id nusber*/

aux is fld(access) AuxNodePtr, /*attribute field for future use*/"

encodel is fld(char 1), /*encode statement pointers*/

encode2 is fld(char 1), /*encods expression pointers?*/

father is fld(access) NodePtr, /*immediate ancestort*/

pbrother is fld({access) NodePtr, /*previous sibling stmtt/

nbrother is fld(access) NodePtx, /*next sibling stat*/

t_son is fld(access) NodaPtr, /*then sont/

e_son is fld{access) NodePtr, /%else sont/

label_pointer is field(access) RXPNodaPtr,

ex0 is fld(access) RXPNodePtr,

ex) is fld(access) EXPNodePtr,

ex2 is fld(access) EXPRodePtr;

WWWWYWWWWWDWYWDWYWYYW

typedef int stat_kind
typedef char languages

struct Kode (

languages language;

stat_kind stmt_type;

char stamt_num(8]; /* Statement sequence number in the program */
/* It takes 8§ character positions %/

struct _Awmode *aux; /* attribute node for future use ./

char encodel, encode2;
/* encodel encodes the § structure pointers */
/* sncode2 encodes the 3 expression pointerst/

struct _Node *father; /* the father statement */

struct _Node *pbrother; /* the previous sibling statemsnt +/

struct _Node *nbrother; /* the next sibling statement ¢/

struct _Node *t_son;
/* the first statement of the ¢/
/* block if the current node represents a */
/* compound statement. If it is an 4
/* ‘4f-then-else’, it points to the first »/
/* statement of the ‘then’ block. */

struot _Node *e_son’

/* the first statement of the */
/* ’'else’ block 4f it is an ’'if-then-else’®/
/* statement and 4if there is an ’'else’ */
/* block, ‘WULL’ otherwise. ./
struct _Rxpanode ®label_pointer;
struct _Rxpnode *ex0, texl, *ex2;

TYPE NODE IS RECORD
LANGUAGE : CHARACTER;
STMT_TYPR: INTEGER;
STMT NUM: INTEGER;
AUX: AUXNODEPTR:
ENCODE1l: CHARACTER
ENCODR2: CHBARACTER,
FATHRR: WODRPTR:;
PBROTHER: WODEPIR;
NBROTHER: WODEPTR;
T_SOW: WODEPTR:
E_SO0W: NODEFIR;
LABEL POINTER: RXPNODRPTR;
BX0: EXPNODEPTR;
2X1: EXPNODEPTR;
£X2: RXPNODEPTR;

RND RRCORD;

e wa

Prepared Under Contract No. N60921-90-C~0298 2

Used by pu mission of Computer Command and Control Company; April 23, 1992

. ———— A S e e

Elementary Statement Languages Memo 2

This structure is graphically described as follows:

language

stmt_type

I stmt num .

encodal

encoda?

5 structure pointers

label pointer

3 expression pointers

Three expression pointers ex0, exl, and ex2 are used to store statement arguments in
expression nodes. The fields of the statement structure are as follows:

2.1.1. LANGUAGE

This field is reserved for temporary and future use to denote the translation from a source
language to a version of ESL. It indicates the need to reorder the programs and to use
procedures that correspond to source program special functions and operating system calls. This
must be done in the translation from ESL to Ada.

2.1.2. STATEMENT TYPE

Statement types are discussed in Section 3 for executable statements and in Section 4 for
declaration statements. The statement type are represented in this memo by symbolic names.
The statement types are listed in the tables in Section 3 and 4. The corresponding identification
number of each statement type is given in Appendix L

2.13. AUXILIARY

This field is reserved for temporary use in the processing of an ESL tree.

Prepared Under Contract No. N60921-90-C~0298 3

Used by pcrmission of Computes Command and Control Company; April 23, 1992

B

Encodel and Encode2 are represented each by one character. Encodel encodes the
presence/absence of 4 structure pointers:

Elementary Statement Languages / Memo 2
2.14. ENCODE1 AND ENCODE2 |

pbrother

I nbrother

t_son

e_son

l The presence/absence of each pointer above is a binary number in this order. The
presence/absence of the above four pointers is encoded by one of the following 16 characters:

0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,TF
Since every statement (except the root) has a father pointer, the presence of the father
pointer is not encoded.

For instance, encodel = ’7’, corresponds to the binary number

0111
from the encoding rule, we find

pbzother = null

nbrother /= null
t_son /= null
e_son /= null

Similarly, the character encode2 encodes use of four expression pointers:

label pointer
ex0
exl
ex2

as one of the 16 characters:
0,1,2,3,4,5,6,7,8,9,A,8,C,D,E, 7

Encodel and Encode2 are also used to unload the program tree to a disk file in depth first
left to right order and to load back the disk file to memory and rebuild the tree.

Prepared Under Contract No, N60921-90-C-0298 4

Used by pcrmission of Computer Command and Coatrol Company; April 23, 1992

| s s

Elementary Statement Languages Memo 2

A statement is graphically portrayed as having five pointers to its neighbors, if any.

|
| © iis. sTRUCTURE POINTERS
'

pbrother nbrother

t_son e_son

2.1.6. LABEL_POINTER

This field contains the pointer to a label expression, if any. Its presence is included in
encode?2.

2.1.7. EXPRESSION POINTERS

There may be as many as three main expressions representing the arguments of each
statement. The existence of such expressions is coded in encode2. Each expression may consist
of further subexpressions, as discussed further.

Prepared Under Contract No. N60921-90-C-0298]

Used by px rmission of Computet Command and Control Company; April 23,1992

Elementary Statement Languages Memo 2

2.2. DATA STRUCTURE OF EXPRESSION NODES

An expressions node has a structure of type expnode. Following is the definition of the
structure in MODEL, C, and Ada:

1 expnode is type accessed by ExpnodePtr,

exp_type is fld(bin fix),

nb is £1ld(bin fix),

nbrother is fld(access) ExpnodePtr,

no_of_desc is fld(bin fix),

point (3) is fld(access) ExpnodePtr,

no_of char is f£1a(bin f£ix),

str_value is fld(char (*)); /* variable length field */

WWWWwwuww

typedef int exp_kind; /* PIC 999’ #/

struct _Expnode({
exp_kind exp_type: /* Numeric code of the expression */
int nb; /* ItisO0ifnbrother is NULL,1 otherwise */

struct _Expnode *nbrother; /* Pointer to next brother */
int no_of_desc; /* Number of sons of current node */

struct _Expnode *point[3]; /* Pointers to sons of this node */
int no_of_chax; /* Length of str_value */

char str_value(64]; /* Variable length string value,up to 4046 */
) I

TYPE EXPNODE (LEN_STR_VALUE: integer:=0)
IS RECORD

EXP_TYPE: INTEGER;

NB: INTEGER;

NBROTHER: EXPNODEPTR;

NO_OF DESC: INTEGER;

POINT: EXP_VECTOR(1..3);

NO_OF_CHAR: INTEGER;

STR_VALUE: STRING(1l..LEN STR_VALUE);
END RECORD;

where

TYPE EXP_VECTOR IS ARRAY(POSITIVE RANGE <>) OF EXPNODEPTR;

Prepared Under Contract No. N60921-90-C-0298 6

UsdbyptnniuialdcunplmcammndudedCanm;Aprﬂn.lm
#

N

Elementary Statement Languages / Memo 2

This structure is graphically described as follows:

exp_type
ab

nbrother -

no_of_desc

3 point

no_of_ char

str_value

Each field of the structure expnode is explained in the following.

2.2.1. EXPRESSION TYPE

The field exp_type is an integer which identifies the type of the expression. The expression
types and respective numbers are given in Section S.

2.2.2. POINTERS TO BROTHER EXPRESSION

The field nb records the presence (nb=1) / absence (nb=1) of next expression nbrother. This
enables creating a sequence of expressions. For instance, a function definition may have several
formal parameters.

stmt_type = FCN_SPEC

ex0 -> function name

exl -> parametexs pl, p2, p3

ex2 -> data type of return value

The structure of such a statement is:

exl
pl P2 P3 " null
nbrothex nbrother .nbrother

2.23. NUMBER OF DESCENDANTS

The field no_of_desc records the number of sons of the current node. When the node is a
terminal node, it has zero descendants.

Prepared Under Contract No. N60921-90-C-0298 7

Used by pcrmission of Comguter Command and Comtrol Company; April 23, 1992

Elementary Statement Languages ‘ Memo 2

2.24. POINTERS TO DESCENDANTS

The field point is an array of pointers to son expression nodes. It is a three element array.

2.2.5. NUMBER OF CHARACTERS IN STRING
The string str_value has a .variable length. The length (number of characters) of the

str_value field is recorded in this field. A value of 0 in this field indicates that the str_value field
of the expression node is not used.

2.2.6. STRING

This field str_valhe of the USAGE_EXPR (see Section 5 for expression types) is used to
store the function of some expressions as follows.

VALUE MEANING
COMMENT @C |an inline comment.
DELTA @D |precision of a fixed type.
ENUMER @E |alist of enumerated data types.
INITIAL @1 |inital value.
LAYOUT @Y |bit range of component.
LENGTH @L |the length of a record in terms of bits.

NEW @N | new instantiation of type or generic name.
PACKING @P |word and byte information for a variable
packing clause.

RANGE @R |range of a scalar type.

Prepared Under Contract No. N60921-90-C~0298 8

UadbyptmiukdeompmvCammndNCmoICanpmy;Apdln.lm

X

Elementary Statement Languages

Memo 2

30

EXECUTABLE STATEMENTS

The executable statements in ESL are listed in the following table.

STATEMENT TYPE |STATEMENT SUBTYPE STMT_TYPE NAME
1. |Condition if-then—else IF_STAT
Block case CASE_STAT
when WHEN_STAT
2. |Loop while WHILE_STAT
Block until UNTIL_STAT
for FOR_STAT
3. | Assignment assignment ASSIGN_STAT
Terminal
4. |Procedure Call call CALL_STAT
Terminal raise exception RAISE_STAT
5. |Message send/receive message |MSG_CALL
Terminal accept message MSG_ACCEPT
6. |Input/Output read READ_STAT
Terminal write WRITE_STAT
7. |1/O Auxiliary open OPEN_FILE
Terminal close CLOSE_FILE
position POSITION_FILE
8. |Context with WITH_STAT
Terminal use USE_STAT
program_separate PACK_SEP
PROC_SEP
FCN_SEP
TASK_SEP
separate SEPARATE_STAT
pragma PRAGMA
9. |Control Transfer return RETURN_STAT
Terminal go-to* GOTO
exit* EXIT
null* NULL
* Statements eliminated in later processing of ESL.

The expressions used with each statement type are discussed below.

Prepared Under Contract No. N60921-90-C-0298

Used by pcrmission of Computer Command and Control Company; Apnil 23, 1992

Elementary Statement Languages / Memo 2

3.1. CONDITIONAL BLOCK

A conditional block can be of types IF_STAT, CASE_STAT and WHEN_STAT.

IF_STAT statements represents:

IF <condition> THEN <statementsl>;
{ELSE <statements2>)

<condition> is a Boolean expression. The ESL statement format is:

stmt_type = IF_STAT;
ex0 -> <condition>;
t son -> <statementsl)>;

e_son -> <statements2>, if any;

A CASE_STAT statement represents choice of one of several blocks <statementsl>, . . .,
<statementsn> according to the values valuel, . . ., value n. The CASE statement contains
blocks of WHEN and ELSE statements. Each of these blocks contains the respective
<statementsi>:

The format of the CASE statement is:

stmt_type = CASE _STAT:

ex0 => <expression>’

t_son -> <first WHEN statement>

e_son -> <first statement under the ELSE statement, if any>

The format of the WHEN statement is:

stmt type = WHEN_STAT
ex0 -> <valuel)>;
t son =-> first of statementi;

The CASE statement tree representation is illustrated below.

Prepared Under Contract No. N60921-90-C-0298 10

Used by pemission of Computer Command and Control Company; Aprd 23, 1992

Elementary Statement Languages / Memo 2

ex0 <expression>

of ELSE statement
father

father

ex0 expression
value

ex0 expression
value

abrother nbrother

pbrother

t son t son
first of <statemantsl> first of <statement2>
3.2. LOOP BLOCK

The loop statement has three forms: WHILE_STAT, UNTIL_STAT, and FOR_STAT.
A WHILE_STAT statement represents:
WHILE <condition>
It is followed by descendants forming the loop body.
<condition> is a boolean expression.
The ESL format is:

stmt_type = WHILE_ STAT;
ex0 -> <conditiond>;
t_son -> first statement in loop body;

An UNTIL_STAT statement represents:
DO UNTIL <condition>;
The ESL format is:

stmt_type = UNTIL_STAT;
ex0 -> <condition>;
t_son -> first statement in loop body;

Prepared Under Contract No. N60921-90-C~0298 n

Used by pcrmission of Computer Command and Control Company; Apel 23, 1992

Elementary Statement Languages ’ Memo 2

A FOR_STAT statement represents:

FOR <loop variable> = FROM <initial value> THRU <final value>
{BY <step length>]}

Its ESL format is:

stmt_type = FOR_STAT;

ex0 ~> <loop variable>;

exl -> <initial value>, <final value>, <step length>;
t_son -> first statement in loop body:;

3.3. ASSIGNMENT STATEMENT

An assignment always has a left hand side variable and a right hand side expression. It has
the ESL format:

stmt_type = ASSIGN_STAT;

ex0 -> the left hand side variable(s):
exl ~-> the right hand side expression;

34. PROCEDURE CALL

This statement represents regular as well as operating system calls. The source program
may call the operating system to provide certain services. Operating system calls in a source
language for input/output and task communication are represented by ESL statements in the
Input/Output (Section 3.5) and Message (section 3.6) categories described below respectively.
Other operating system calls are handled as this type of procedure call statement.

The ESL format for a procedure call is:

stmt_type = CALL STAT;
ex0 -> name of the procedure;
exl -> list of parameters:;

ex1 points to a list of parameter expressions. Each parameter expression consists of a parameter
name.

Operating system calls in a source language program perform a variety of functions which
may not have a direct equivalent in Ada. Their call name and parameters will be stored for later
analysis. Operating system calls for task messages and 1/O are discussed separately below.

The ESL format for a RAISE stat=ment is:

stmt_type = RAISE_STAT
ex0 -> name of exception
example: RAISE STAT (ERROR};

Prepared Under Contract No. N60921-90-C-0298 12

Used by pcrmission of Computer Command and Control Campany; Apri) 23,1992

Elementary Statement Languages ,/ Memo 2

3.5. MESSAGE STATEMENTS

These staterments are used to indicate communications between tasks. There are two
statement types. MSG_CALL is used when the caller specifies the name of the other
communicating task. MSG_ACCEPT is used when the communication may involve unknown
other tasks. A communication must pair a MSG_CALL in one task with a MSG_ACCEPT in
another task. Their ESL format is:

stmt_type = MSG_CALL

ex0 -> name of a procedure used to interpret a message send/receive
operation of source program.

exl -> list of parameters with modes

ex2 -> a list of task and entry names

stmt_type = MSG_ACCEPT

ex0 -> name of a procedure used to interpret source program send/receive
exl -> list of parameters with nodes

ex2 -> entry names

3.6. INPUT/OUTPUT

Input/Output statements represent I/O activities in the source language or its operating
system. The ESL format provides for storing the operating system call name and its arguments
as follows:

stmt_type = READ STAT (for input) orx
WRITE_STAT (for output)
ex0 -> name of a procedure that interprets the operation of the source
language and operating system I/O
exl -> list of parameters
ex2 -> file_name, format

3.7. INPUT/OUTPUT AUXILIARY STATEMENT

There are three input/output auxiliary statements: OPEN_FILE, CLOSE_FILE, and
POSITION_FILE. They are stored as follows.

stmt_type = OPEN_FILE, CLOSE FILE or POSITION_FILE

ex0 -> procedure name that interprets source program I/0 auxiliary
commands. Empty expression (]} if not applicable.

exl -> list of parameters

ex2 -> file name

3.8 CONTEXT STATEMENTS

These statements indicate that definition of a program entity is dependent on other
definitions or incomplete.

WITH_STAT and USE_STAT refer to other packages. The format is

Prepared Under Contract No. N60921-90-C-0298 3

Used by permission of Computer Command and Coatrol Company; April 23, 1992

N

Elementary Statement Langnages Memo 2

-m__tfp. = WITH_STAT or USE_STAT;
ex0 —> package names for USE_STAT
package and program unit name for WITH_STAT ;

PACK_SEP, TASK_SEP, PROC_SEP and FCN_SEP are used to indicate that the body of
these program units (package, task, procedure or function, respectively) is provndcd elsewhere
and compilable separately in Ada. The format is:

stmt_type ™= PACK STAT, TASK_SEP, PROC_SEP or FCN_SEP

There are no arguments. This is a terminal statement with the respective program unit
specification as the parent.

The SEPARATE_STAT statement is used to indicate that the body of a program unit
follows, where the specification is in another package. The format is

stmt_type = SEPARATE_STAT
ex0 = package namea where unit specified

This is a terminal statement preceding the program unit body declaration.

The PRAGMA statement provides information used in the compilation. The format is:
stmt_type = PRAGMA

ex0) = pragma name
exl = 1list of attributes

39 CONTROL TRANSFER

A return statement returns the control from a called procedural or function to a calling
procedure or function. A return statement may include an expression for a returned value.

A return statement is stored as:

stmt_type = RETURN_STAT;
ex0 ~> expression, 1f any;

The following three statements extend ESL: GOTO, EXIT, NULL. These statements can
have one or more labels. They are eliminated in later processing of ESL. Each of these
statements is stored in a node statement structure, as a terminal ESL statements.

A Goto statement has its usual meaning.
GOTO <label> >
The format is:

stmt_type = GOTO_STAT;

ex0) ~> <label>

exl -> procedure or function name; if <label> is not in the scope of the
immediate enclosing procedure or function.

Prepared Under Contract No. N60921-90-C-0298 14

Used by pcrmission of Computer Command and Control Company; April 23, 1992

)

/

Elementary Statement Languages g Memo 2

An EXIT statement nested in a loop transfers control to the statement following the end of a
nesting loop. If an EXIT does not have a label, the control always transfers to the end of the
immediate nesting loop. If an EXIT statement has a label, the control transfers to the end of the
labelled loop. The labelled loop must nest the EXIT statement.

The format is

stmt_type = EXIT;
ex0 =-> <lasbel>;

A NULL statement provides a holder for a statement label, as the destination of a GOTO
statement. A NULL statement format is:

stmt_type = NULL;

Prepared Under Contract No. N60921-90-C-0298 15

Used by pormission of Computer Command and Control Comparny; Apri) 23,1992

I'Elcmutary Statement Langnages Memo 2
4. DECLARATION STATEMENTS
The table below summarizes the ESL declaration statements.
STATEMENT TYPE STATEMENT STATEMENT NAME
SUB_TYPE
1. |Program Type: task TASK_TYPE
Block generic program PACK_GEN
PROC_GEN
FCN_GEN
2. |Structure Type: record type RECORD_TYPE
Block
3. | Variable Type: variable type VARIABLE_TYPE
Terminal
4. | Program Unit: system SYSTEM
Block program file PROGRAM_FILE
package PACK_SPEC
task TASK_SPEC
procedure PROC_SPEC
function |FCN_SPEC
program body PACK_BODY
PROC_BODY
FCN_BODY
TASK_BODY
begin-end BEGIN
exception EXCEPTION_DCL
EXCEPTION_HNDLR
select SELECT
5. | Structure of Variable: record RECORD
Block
6. | Variable: variable VARIABLE
Terminal constant CONSTANT
7. [File: i/o file 10_FILE
Terminal i/o device 10_DEVICE
task entry TASK_ENTRY
8. | Comment: :
ordinary ORD_COMMENT
preprocess PREP_COMMENT
compiler COMP_COMMENT
debugging DEBUG_COMMENT

These types of statements are further described below.

Used by permission of

Prepared Under Contract No. N60921-90-C-0298

Computer Command and Control Company; April 23, 1992

16

Elementary Statement Languages /7 Memo 2

4.1 PROGRAM TYPE

Task type is stored in the ESL program trec as follows:

stmt_type = TASK_TYPE
ex0 -> type name;

[}
There are three generic statement types for package: PACK_GEN, for procedure:
PROC_GEN and for function: FCN_GEN. They have the following points.

stmt_type = PACK_GEN, PROC_GEN or FCN_GEN

ex0 ~-> name .

t_son -> first generic formal parameter

youngest sibling of t_son -> specification of generic program unit

This is illustrated in the figure below.

PACK_SPEC
PROC_SPEC
or

FCN_SPEC

¢x0 —> name of generic unit

- e w

first generic
formal
parameter

specification of
generic unit

4.2 STRUCTURE TYPE

A record type declaration which has the following format:

stmt_type = RECORD_TYPE;

ex0 -> type name;

exl -> length .
t_son -> first entity of the record;

Prepared Under Contract No. N60921-90-C~0298 , n

UadbypmhsiudewurCmmd-ﬂwm; Apeil 23, 1992

Elementary Statement Languages Memo 2

| :
4.3 VARIABLE TYPE

The variable type declaration is stored as:

stmt_type = VARIABLE TYPE;

ex(-> type name;

exl ~-> type definition, range, enumeration type values, .
initial value, length, packing and layout.

ex2 -> dimension ranges, if aay;

4.4 PROGRAM UNIT

A program unit declaration is a block statement. It denotes begin—end, a system, a
subsystem, a package, a task, a procedure or a function.

l Begin_end has the following format:

stmt_type = BEGIN;
i t_son -> first statement in the block:;

A system or subsystem head is stored as:

l stmt_type = SYSTEN;
ex0 -> system or subsystem name;
t_son -> first statement in a system;

A package or a task do not have parameters. Their format is

stmt_type = PACK_SPEC or TASK_SPEC
ex0 -> name, [name of generic package being instantiated)

Their body block has a similar format:

stmt_type = PACK BODY or TASK_BODY
ex0~> name
t son -> first statement

Note: there is no PACK_BODY of the package instantiate a generic package.

A function may have multiple IN mode parameters and returns a value. A procedure may
have none or multiple IN, OUT and INOUT mode (including no value at all).

A function format is:

stmt_type = FCN _SPEC;
ex0 -> function name, [name of generic function being instantiated];
exl -> formal parameters; (or generic formal parameters

if the function is an instance of a genexic function):;
ex2 ~> type of return value;

Prepared Under Contract No. N60921-90-C—0298 18

Used by pc rmission of Computer Command and Control Company; April 23, 1952

Elementary Statement Languages Memo 2

A function body is stored similarly as:

stmt_type = FCN_BODY;

ex0 -> function name;

exl -> input formal parameters, names and types
ax2 -> type of return value;

t_son ~> first statement;

Note: there is no function body if it is an instantiation of a generic function.

A procedure is stored as:

stmt_type = PROC_SPEC;

ex0 -> procedure nams;

exl ~> formal parameter name, mode, and type or generic formal paramaters
if the function is an instance of a generic function;

The body of a procedure is:
stmt_type = PROC_BODY;
ex0-> procedure name;

exl-> formal parameter name, types, mode and dafault value;
t_son -> first statement;

Note: there is no procedure body if it is an instance of a generic procedure.

The storage of a parameter in a function or a procedure declaration is further explained
below.

Each formal parameter may have a name, 2 mode, a data type, and a default value. These
associated attributes are stored in expression data structure expnodes as follows:

ex1-> expnode exp_type: FORMAL_PARA;

nbrother: points to next parameter;

no_of_desc: 3

point(1): points to a NAME expnode which contains the parameter mode;
That is, one of "IN”, "OUT™, or "INOUT™,

point(2): points to a NAME expnode, which contains the
data type;

point(3): points to an expression expnode, which is the default value
of the parameter;

no_of_char: length of the parameter name;

str_value: parameter name;

The formats for EXCEPTION and SELECT are

stmt_type = EXCEPTION
example: EXCEPTION;
{descendants are the WHEN <conditions>)

stmt_type = SELEC?
example: SELECT

Prepared Under Contract No. N60921-90-C~0298 19

Used by permission of Computer Cammand and Cooatrol Company; April 23, 1992

Elementary Statement Languages Memo 2

Taw UL
-

This is illustrated below:

name
Program%

Declaration
Statement

erlY A L,

APPROP. EXP.

VALUE

4.5 STRUCTURE DECLARATION

A record declaration is of a single or an array of records. This declaration is stored in the

program tree as:

stmt_type = RECORD;
ex0 ~-> record name;
ex]l -> type, length;
ex2 -> dimension ranges;
(1f ex2=null, it represents a single recoxd):;
t son -> first field of the record;

The fields are stored as descendents of the record.

Prepared Under Contract No. N60921-90-C-0298 o
1

Used by permission of Computer Command and Control Company; April 23, 1992

Elementary Statement Languages Memo 2

4.6 VARIABLE

There are two declarations in this category: variable and constant declarations. They are
stored in the program tree as follows.

variable:

stmt_type = VARIABLE;
ex0 -> variable name;
exl -> type, range, initial value, packing, length;
ex2 ~> dimension ranges;

(1f ex2=null, it represents a single variable);

constant:

stmt_type = CONSTANT;
ex0 -> constant name;
exl -> type, value, packing, length;
ex2 -> dimension ranges:
{(if ex2=null, it represents s single constant);

4.7 FILE

A file declaration of a file is stored as:

stmt_type = IO FILE, IO _DEVICE;
ex0 -> file name;
exl -> list of parameters:
ex2 -> <file type>
<file type> could be ’‘sequential’, ‘post’,
'‘mail’, ’isam’, ’'rel’, ’‘screen’, ’'direct’ or others used in the
source language or operating system.

A task entry is declared as:

stmt_type = TASK_ENTRY
ex0 -> name
ex]l -> list of parameters, modes and types.

4.8 COMMENT DECLARATION

A comment may originate in a user comment, a keyword or comment in the source language
program. Additionally, a source language keyword may be stored as a comment expression. It
may affect the translation of a program from ESL to Ada.

There are four kinds of comments: ordinary user comment and source language
preprocessor command, compiler command, or debugging command:

Their format is

stmt_type = ORD_COMMENT, PRRP_COMMENT COMP_COMMENT,
or DEBUG_COMMENT
ex0 -> comment

Prepared Under Contract No. N60921-90-C-0298 21

Used by permission of Compunter Command and Coatrol Company; April 23, 1992

Memo 2

Elementary Statement Languages
s. EXPRESSION NODES
5.1 TYPES OF EXPRESSION NODES

The table below describes the type of expnodes.

Logical Expressions

Code Expr Name Operation Operator Example
1 OR_EXPR inclusive disjunction OR aORb
2 XOR_EXPR exclusive disjunction XOR a XOR b
3 AND_EXPR conjunction AND a AND Db
4 NOT_EXPR logical negation NOT NOT a
Relational Expressions
Code Expr Name Operation Operator Example
11 GT_EXPR greater than > a>b
12 GE_EXPR greater than or equal to >= a>=b
13 EQ_EXPR equal to = a=b
14 NE_EXPR not equal to = a/=b
15 LT_EXPR less than < a<b
16 LE_EXPR less than or equal to <= a<=b
Arithmeiic Expressions
Code Expr Name Operation Operator Example
21 PLUS_EXPR |addition + a+b
identity + +3, 42
22 MINUS_EXPR |subtraction - a-~-b
negation - -22.5, -2
23 TIMES_EXPR |multiplication . a*b
24 DIV_EXPR division / a/b
25 EXPNT_EXPR |exponentiation b a **b
26 MOD_EXPR modulus MOD a MODb
27 REM_EXPR remainder REM a REMb
28 ABS_EXPR absolute value ABS ABS a
22

Prepared Under Contract No. N60921-90-C-0298

Used by pcrmission of Computer Command and Control Company; April 23,1992

Elementary Statement Languages Meme 2
String‘ Concatenation
Code] Expr Name Operation Operator Example
31 ‘TCONCAT__EXPR concatenation & a&b
Miscellaneous
Code Expr Name Operation Operator Example
41 PAREN_EXPR parentheses () (a+b)
42 SUBSCR_EXPR subscripts () a(i,j, k)
43 FUNCTION_EXPR |function () f (a,b)
44 QUALIF_EXPR qualification . filel.fieldl
45 ATTR_EXPR attribute ' m_integer’ image
46 DOTS_EXPR range 1..10,a..b
47 COMMA_EXPR delimiter, separation . f (a, b, c), a(i, j, k)
48 FORMAL_PARA |formal parameter clause pl:in, integer
49 USAGE_EXPR defines attributes @e: red, blue
Terminal Nodes
Code Expr Name Operation Example
61 STRING_CONST |charcter string "abcdefg”
62 NUMBER_CONST | numeric constant 3.14
63 NAME name abc, ml
5.2 FIELDS IN EACH EXPRESSION NODE

Of the 7 fields in the expression node structure, 'nb’ and 'nbrother’ are not used for the
purpose of storing expressions per se. They are used to indicate the existence of other related
expressions. Normally, if an expression has an 'nbrother’, the 'nb’ field of the root node of the
expression is set to 1, and the "nbrother’ field points to its 'nbrother’ expression. Otherwise they
are 0 and NULL respectively. Therefore, in the following description, 'nb’ and "nbrother’ are not
mentioned.

Prepared Under Contract No. N60921-90-C—0298 23

Used by p mission of Computer Command and Comtrol Company; April 23,1992

Elementary Statement Languages Meme 2
Logicai Expressions
1. oR_EXPR (inclusive disjunction): <exprl> OR <expr2>
exp_type = 1 (OR_EXPR)
no_of_desc = 2
point (1) = <exprl> subtree
point (2) = <expr2> subtree
point(3) = null
no_of _char = 0
str_value = empty string
2. XOR_EXPR (exclusive disjunction): <exprl> XOR <expr2>
exp_type = 2 (XOR_EXPR)
no_of _desc = 2
point (1) = <exprl> subtree
point (2) = <expr2> subtree
point (3) = null
no_of_char = 0
str_value = empty string
3. AD_EXPR (conjunction): <exprl> AND <expr2>
exp_type = 3 (AND_EXPR)
no_of _desc = 2
point (1) = <exprl> subtree
point (2) = <expr2> subtree
point (3) = null
no_of _char = 0
str_value = empty string
4. NOT_EXPR (logical negation): NOT <expr>
exp _type = 4 (NOT_EXPR)
no_of_desc = 1
point (1) = <expr> subtree
point (2) = null
point(3) = null
no_of char = 0
str_value = empty string
Relational Expressions
l. GT_EXPR (greater than): <exprl> > <expr2>
exp_type = 11 (GT_EXPR)
no_of_desc = 2
point (1) = <exprl> subtree
point (2) = <expr2> subtree
point(3) = null
no_of_char = 0
str _value = empty string
24

Prepared Under Contract No. N60921-90-C-0298

Used by p« ‘mission of Conputer Cammand and Control Company; April 23, 1992

Elementary Statement Languages

2. GE_EXPR (greater than or equal to): <exprl> >= <expr2>

exp_type = 12 (GE_EXPR)
no_of_desc = 2

point (1) = <exprl> subtree
point (2) = <expr2> subtree
point (3) = null

no_of_char = 0

str_value = empty string

3. EQ_EXPR (equal to): <exprl> = <expr2>

exp_type = 13 (EQ_EXPR)

no of _desc = 2

point (1) = <exprl> subtree
point (2) = <expr2> subtree
point(3) = null

no_of_char = 0

str_value = empty string

4. NE_EXPR (not equal to): <exprl> /= <expr2>

exp_type = 14 (NE_EXPR)
no_of_desc = 2

point (1) = <exprl> subtree
point (2) = <expr2> subtree
point(3) = null

no_of_char = 0

str_value = empty string

5. LT_EXPR (less than): <exprl> < <expr2>

exp type = 15 (LT_EXPR)
no_of_desc = 2

point (1) = <exprl> subtree
point (2) = <expr2> subtree
point(3) = null

no_of_char = 0

str_value = empty string

6. LE_EXPR (less than or equal to): <exprl> <= <expr2>

exp_type = 16 (LE_EXPR)
no_of_desc = 2

point (1) = <exprl> subtree
point (2) = <expr2> subtree
point(3) = null

no_of_char = 0

str_value = empty string

Prepared Under Contract No. N60921-90-C-0298

Used by permission of Computer Command and Control Company; April 23, 1992

|

- T -— . Iy VAN T T T W e e

Elementary Statement Langnages

Memo 2
Arithmetic Expressions
1. PLUS_EXPR (addition, binary operation): <exprl> + <expr2>
exp_type = 21 (PLUS_EXPR)
no_of desc = 2
point(l) = <exprl> subtree
point(2) = <expr2> subtree
point(3) = null
no_of _char = 0
str_value = empty atring
2. PLUS_EXPR (identity, unary operation): + <expr>
exp_type = 21 (PLUS_EXPR)
no_of _desc = 1
point (1) = <expr> subtree
point(2) = null
point (3} = null
no_of char = ¢
str_value = empty string
3. MINUS_EXPR (subtraction, binary operation): <exprl> - <expr2>
exp_type = 22 (MINUS_EXPR)
no_of _desc = 2
point (1) = <exprl> subtree
point(2) = <expr2> subtree
point(3) = null
no_of_char = 0
str_value = empty string
4. MINUS_EXPR (negation, unary operation): -~ <expr>
exp_type = 22 (MINUS_EXPR)
no_of desc = 1
point (1) = <expr> subtree
point (2) = npull
point (3) = pull
no_of char = 0
str_value = empty string
5. TIMES_EXPR (multiplication): <exprl> * <expr2>
exp_type = 23 (TIMES_EXPR)
no_of _desc = 2
point (1) = <exprl> subtree
point (2) = <expr2> subtree
point (3) = null
®» no_of char = 0
Str_value = empty string
Prepared Under Contract No. N60921-90-C-0298 %

Used by pu mission of Computer Command and Control Campany; April 23, 1992

Elementary Statement Languages Memo 2

6. DIV_EXPR (division): <exprl> / <expr2>

exp type = 24 (DIV_EXPR)
no_of_desc = 2

point (1) = <exprl> subtree
point (2) = <expr2> subtree
point (3) = null

no_of_char = 0

str_value = empty string

7. EXPNT_EXPR (exponentiation): <exprl> #** <expr2>

exp_type = 25 (EXPNT_EXPR)
no_of_desc = 2

point (1) = <exprl> subtree
point (2) = <expr2> subtree
peint (3) = null

no_of_char = 0

str_value = empty string

8. MOD_EXPR (modulus): <exprl> MOD <expr2>

exp_type = 26 (MOD_EXPR)
no_of_desc = 2

point (1) = <exprl> subtree
point (2) = <expr2> subtree
point (3) = null

no_of_char = 0 .
str_value = empty string

9. REM_EXPR (remainder): <exprl> REM <expr2>

exp_type = 27 (REM_EXPR)
no_of_desc = 2

point (1) = <exprl> subtree
point (2) = <expr2> subtree
point (3) = null

no_of_char = 0

str_value = empty string

10. ABS_EXPR (absolute value): ABS <expr>

exp_type = 28 (ABS_EXPR)
no_of_desc = 1

point (1) = <expr> subtree
point(2) = null

point(3) = null
no_of_char = 0

str_value = empty string

Prepared Under Contract No. N60921-90-C-0298 2

Used by pcmnission of Compuier Command and Controt Company; April 23, 1992

Elementary Statement Languages

Memo 2

String Concatenation

1. CONCAT_EXPR (concatenation): <exprl> & <expr2>

exp_type = 31 (CONCAT_EXPR)
no_of_desc = 2

point(l) = <exprl> subtree
point (2) = <expr2> subtree
point(3) = null

no_of_char = 0
str_value = empty string

Miscellaneous Expressions

1. PAREN_EXPR (parentheses):

exp_type = 41 (PAREN EXPR)
no_of _desc = 1

point (1) = <expr> subtree
point(2) = null

point(3) = null

no_of char = 0
str_value = empty string

{<expr>)

2, SUBSCR_EXPR (subscripted variables): <exprl> (<expr2>)

exp_type = 42 (SUBSCR_EXPR)
no_of_desc = 2

point (1) = <exprl> subtree,
point (2) = <expr2> subtree,
point{(3) = null

no_of_char = 0
str_value = empty string

the variable
the subscripts

3. FUNCTION_EXPR (function calls): <exprl>(<expr2>)

the function name
the actual parameters

exp_type = 43 (FUNCTION_EXPR)
no_of_desc = 2

point (1) = <exprl> subtree,
point (2) = <expr2> subtree,
point(3) = null

no_of char = 0
str value = empty string

4. QUALIF_EXPR (quaiification): <exprl> . <expr2>

exp_type = 44 (QUALIF_EXPR)

no_of desc = 2

point(l) = <exprl> subtree,
point (2) = <expr2> subtree,
point(3) = null

no_of char = 0
str value = empty string

5. ATTR_EXPR (attribute): <exprl> *

exp _type = 45 (ATTR_EXPR)
no_of _desc = 2

record name
component in

such as
such as

<expr2>

record

Prepared Under Contract No. N60921-90-C-0298

Used by pcmission of Computer Command and Control Company; April 23, 1992

Elementary Stafement Languages

Memo 2

poiﬁt(l) = <exprl> subtree
point (2) = <expr2> subtree
point(3) = null

no_of_char = 0
str_value = empty string

6. DOTS_EXPR (range): <exprl> .. <expr2>

exp type = 46 (DOTS_EXPR)

no_of_desc = 2

point (1) =" <exprl> subtree
point (2) = <expr2> subtree
point(3) = null

no_of_char = 0
str_value = empty string

7. COMMA_EXPR (delimiter, separation): <exprl> , <expr2>

exp_type = 47 (COMMA_EXPR)
no_of_desc = 2

point (1) = <exprl> subtree,
point (2) = <expr2> subtree,
point(3) = null

no_of _char = 0

str_value = empty string

subscript or
subscripts

actual parameter
or actual parameters

8. FORMAL_PARA (formal parameters): [<exprl>) [<expr2>] [<expr3>) [<expr4>]

where <expl> = formal parameter name

<exp2> = mode, ‘IN’, ‘0OUT', or ’INOUT’
<exp3> = parameter type name
<exp4> = default parameter value,

be present

exp_type = 48 (FORMAL_PARA)

may or may not

no_of _desc = 3 4if <exp4> present, 2 1if not

point (1) = <expr2> subtree, the mode

point (2) = <expr3> subtree, the type name

point (3) = <expr4> subtree, the default value if present
null 1if absent

no_of_char =
str_value =

length of the
the formal parameter name

formal parameter name,

<exprl>

Prepared Under Contract No. N60921-90-C-0298

MbypcnniuiondCanmeanmmdNQ-olCanpmy;Aﬁlﬁ.lm
“

29

Elcmenlary Statement Languages Memo 2

9. USAGE_EXPR (expression usage indication): @C: <expr>
where C is a single character indicating the usage of <expr>.

exp_type = 49 (USAGE_EXPR)
no_of_desc = 1

point (1) = <expr> subtree
point(2) = null

point(3) = null

no_of_char = 1length of the character string in ’/str_value’

str_value “COMMENT® if C='C’
“DELTA" it C='D’
YENUMER" it C='E’'
“DIGIT” if C='G’
“INITIAL” if C="1'
“LENGTR" it C='L’
"NEW” if C='N’
"PACKING” if C='pP’
"RANGE” if C='R’
~“LAYOUT” if C="Y’

For each comment a usage expression node (exp_type=USAGE_EXPR)
with a string constant node (exp_type=STRING_CONST) has its only de-
scendent (point(1)), which contains the comment as its str_value’.

In general, the usage expression of the comment is ‘pbrother’ (before) or
*nbrother’ (after) of the neighboring expression node which has higher prece-
dence.

Terminal Nodes

10. STRING_CONST (character strings): “abc xyz”

exp_type = 61 (STRING CONST)

no_of_desc = 0

point{l) = null

point(2) = null

point(3) = null

no_of_char = length of str_value, not including quotes,
7 in this example

str_value = character string %“abc xyz”

11. NUMBER_CONST (numbers): 3.1416

exp_type = 62 (NUMBER_CONST)

no_of desc = 0

point(l) = null

point(2) = null

point(3) = null

no_of_char = length of str _value, 6 in this example
str _value = character string ~3.1416"

Prepared Under Contract No. N60921-90-C-0298 30

Used by pcrmission of Computer Command and Control Company; April 23, 1992
L N

Elementary Statement Languages Memeo 2

12. NAME (names) : MATRIX_3 -
exp_type = 63 (NAME)
no_of_desc = 0
point (1) = null
point(2) = null
point(3) = null
no_of_char = 1length of str value, 8 in this example
str_value = character string “MATRIX_ 3~

5.3 TREE CONSTRUCTION EXAMPLES

Example 1

In the following, an expression, a*b+c/d, is used to illustrate how an expression subtree is
constructed. A horizontal rectangle represents a non-terminal node; while a vertical rectangle
represents a terminal node. Each small box in the rectangle represents a field in the structure. A
field from which an arrow comes out means a pointer; otherwise, it is an integer or a character
string with its value indicated. For clarity only the fields involved are indicated.

ex0

a b e d

In the above diagram, x, y, and z represent the expression types as well as the operators.
They have the following value:

x = PLUS_EXPR
y = TIMES_EXPR
© = VAR_NAME

Prepared Under Contract No, N60921-90-C-0298 31

Used by p.mission of Computes Command and Control Company; April 23, 1992

flcmn!ary Statement Languages Memo 2
Example 2
A functon call, f(a*b+c/d,x+y), is used to illustrate how such an expression tree is
constructed.
tunctlIn call
M c
N L ’
r
expression a*b + c/d 4 +
{details of this expression 3 J
is the same as that in Example 1)
b 4 Y

In the above diagram, M, N, L, K and J represent expresson types as follows:

M = FUNCTION_EXPR
N = PROGRAM_NAME
L = COMMA_EXPR

J = VAR_NAME

Prepared Under Contract No. N60921-90-C-0298

Used by pcmission of Computer Command and Control Compeny; April 23, 1992

32

Elementary Statement Languages Memo 2

Example 3
A qualified name a(k).b(i,j+1) can be stored as follows:

qualified name

In the above diagram, X< Y< Z, W, V, and U represent expression types as follows:

= QUALIF_EXPR
= SUBSCR_EXPR
= VAR _NAME

= COMMA_EXPR
= PLUS_EXPR

= NUMBER_CONST

B N R

Prepared Under Contract No. N60921-90-C-0298 3

Used by permission of Computes Command and Control Company; April 23, 1992

Elementary Statement Languages Memo 2

Example 4
VARIABLE_TYPE (alpha_first_type) IS (CHARACTER}] of ({0..15));
ex)— exp_type=NAME
nb=0
nbrother=null
no_of_desc=0
point (1) =null

no_of_chaxr=16
str_value=
~*alpha_first_type”

exl—* exp_type=NAME
nb=0
nbrother=null
no_of_desc=0
‘ point (i) =null
no_of_char=9
str value=
*CHARACTER”

ex2—* exp_type=DOTS_EXPR
nb=0
nbrother=null
no_of_desc=2

point (1)= o~ ~

point (2)=

point (3)=null

no_of_char=0

str_value=empty

exp_type=NUMBER_CONST exp_type=NUMBER_CONST

nb=0 nb=0

nbrother=null nbrother=null

no_of_desc=0 no_of_desc=0

point (1) =null point (i) =null

no_of_ char=1 no_of_ char=2

str_value="0~ str_value="15"
Prepared Under Contract No. N60921-90-C~0298 M

Used by pc mission of Computer Command and Coatrol Company; April 23, 1992
[T

Elementary Statement Languages

Memo 2

Example §

RECORD_TYPE

{alpha_type) IS RECORD {8L: 160};

ex()——

exp_type-ﬁiﬁi
nb=0
nbrother=null
no_of_desc=0
point (1)=null
no_of_char=10
str_value=
~alpha_type”

ex) ———=

exp_type~USAGE_EXPR
nb=0
nbrother=null
no_of_ desc=1
point(1l)=
point (2) =null
point (2)=null
no_of_char=6
str_value="LENGTH

'

exp_type=NUMBER_CONST
nb=0

nbrother=null
no_of_desc=0
point (i) =null
no_of_char=3
str_value="160"

Example 6
VARIABLE

{third) : ({({INTEGER} (@R:0..255} (@P:0*WORD]}

{€Y:0..7})1};

Prepared Under

Contract No. N60921-90-C-0298

Used by permission of Computer Command and Coatrol Company; April 23, 1992

35

no_of_ char=1
str_value=
'o.

no_of_char=4
stx_value=
“"WORD”

Elementary Statement Languages Meme 2
exp_type=NAME
nb=0
nbrother=null
no_of_desc=0
point (i) =null
no_of_char=5
str_value="third”
exp_type=NAME exp_ type= exp_type= l exp_type=
nb=1 USAGE_EXPR USAGE_EXP USAGE_EXPR
nbrother= © * nb=1 nb=1 nb=0
no_of_desc=0 nbrother=e nbrother—e + nbrother=null
no_of_desc= no_of_desc=1 no_of_desc=1
point ({)=null point (1) = point (1)= point (1) =
no_of_char=7 point (2) =nu\l point (2)=ndl1 point (2)=nu}1l
str_value= point (3) =nul peint (3)=null point (3)=null
~INTEGER" no_of_char=5 no_of_ char= no_of_char=
str_value= str_value= str_value=
~RANGE” " LAYOUT”,
exp_type= exp_type= exp_type=
DOTS_EXPR TIMES_EXPR DOTS_EXPR
nb=0 nb=0 : nb=0
nbrother=null nbrother=null nbrother=null
no_of_desc=2 no_of_desc=2 no_of_desc=2
point (1)= & point (1) = point(l)= &
point (2)= point (2)= point (2)=
point (3) =null point (3)=npll point (3) =null
no_of_char= no_of_char=
str_value= str_value=
exp_type= i exp_type= str_value=
NUMBER_CONST NUMBER_CONST NUMBER_CONST
nb=0 nb=0 nb=0
nbrother=null nbrother=nul nbrother=null nbrother=null
no_of_desc=0 no_of_desc=0 no_of_desc=0 no_of_desc=0
point (i)=null point (1) =nu point (1)=null point (1) =null
no_of_charx=l no_of_char= no_of_char=1 no_of_char=1
stx_value= str_value= str_value= str_value=
~ 0 » ~ z: § ~ L & Ld ~ 7 -
exp_type= exp_type=
NUMBER_CONST NAME
nb=0 nb=0
nbrother=null nbrother=null
no_of_desc=0 no_of_desc=0
point (1) =null point (1) =null

Prepared Under Contract No. N60921-90-C-0298

UtdbypcmﬁuicndCanmeawmnddeoudCanpmy;ApﬂD. 1992

ex0~—

exl—

Elementary Statemen! Languoges Meme 2
Example 7
VARIABLE (tran) @ {alpha_type) {@R:0..4);
- exp_type= ox3 exp_type=
NAME USAGE_EXPR
nb=0 nb=0
nbrother=null nbrother=null
no_of_desc=0 no_of_desc=1
point (1) =null point(l)=
no_of_char=4 point (2) =nul
str_value= point (3)=null
“tran” no_of_char=5
str_value=
~ RANGE”
exp_type= exp_type=
NAME DOTS_EXPR
nb=0 nb=0
nbrother=null rbrother=null
no of_desc=0 no of_desc=2
point {i)=null point (1) = 6"‘—~
no_of_char=10 point (2)=
str_value= point (3)=nu
~alpha_type’ no_of_char=0
str_value=e
exp_type= exp_type=
NUMBER_CONS NUMBER_CONST
nb=0 nb=0
nbrother=null nbrother=null
no_of_desc=0 no_of_desc=~0
point (i) =null point (i) =null

no_of_char=1
str_value="0"

no_of_char=1
str_value="4°

Prepared Under Contract Ne. N60921-90-C-0298

k)

Used by permission of Computer Command and Control Company; April 23, 1993

_— ess esas WSS U UES TP T U U W @ W @ G W

Elementary Stalement Languages Memo 2

Example 8

» is used for delimiting the lists of subscripts such as those in A(ij) or

The comma operator
actual parameters in functions such as ADD(a,b.c). The are stored as follows

[SUBSCR_EXPR|
point (1) point (2)
NAME
"A” F:OMMA_EXPRJ
point (1) point (2)
NAME NAME
’ii.. "j’.
rFUNCI'l_Ol\.I_EXPH
point (1) point (2)
NAME
»ADD” rCOMMAiEXPE]
point (1) point (2)
NAME
i COMMA_EXPR |
point (1) point (2)
NAME NAME
”b’l 11 c”

Prepared Under Contract No. N60921-90-C-0298 38

Used by px ission of Computer Command and Control Company; April 23, 1992

Elementary Statement Languages Memo 2
Appendix: ESL Statement Code
A.lL Declaration Statemenis
STATEMENT STATEMENT STATEMENT
TYPE SUB_TYPE TYPE NAME CODE
1. |Program Type Block task TASK_TYPE 1
generic GENERIC 2
2. | Structure Type Block record type RECORD_TYPE 11
3. | Variable Type Terminal variable type VARIABLE_TYPE 21
4. |Program Unit Block system SYSTEM 31
program file PROGRAM_FILE 32
package PACK_SPEC 33
task TASK_SPEC 34
procedure PROC_SPEC 35
function FCN_SPEC 36
program body PACK_BODY 37
TASK_BODY 38
PROC_BODY 39
FCN_BODY 40
begin—end BEGIN 41
exception EXCEPTION_DCL 42
EXCEPTION_HNDLR {43
select SELECT 44
5. |Structure Block record RECORD 51
6. | Variable Terminal variable VARIABLE 61
constant CONSTANT 62
7. |File Terminal i/o file 10_FILE 71
ifo device 10_DEVICE 72
task entry TASK_ENTRY 73
8. | Comment Terminal ordinary ORD_COMMENT 81
preprocess PREP_COMMENT 82
compiler COMP_COMMENT 83
debugging DEBUG_COMMENT |84

Prepared Under Contract No. N60921-90-C-0298

Used by permission of Computer Command and Control Company; April 23, 1992

39

Elementary Statement Languages

Memo 2

A.2. Executable Statements

STATEMENT TYPE |STATEMENT SUBTYPE STMT_TYPE NAME
Condition if-then—-else IF_STAT 101
Block case CASE_STAT 102
when WHEN_STAT 103
Loop while WHILE_STAT 111
Block until UNTIL_STAT 112
for FOR_STAT 113
Assignment assignment ASSIGN_STAT 121

Terminal
Procedure Call call CALL_STAT 131
Terminal raise exception RAISE_STAT 132
Message send/receive message | MSG_CALL 141
Terminal accept message MSG_ACCEPT 142
Input/Output read READ_STAT 151
Terminal write WRITE_STAT 152
1/0 Auxiliary open OPEN_FILE 161
Terminal close CLOSE_FILE 162
position POSITION_FILE 163
Context with WITH_STAT 171
Terminal use USE_STAT 172
' program_separate PACK_SEP 173
TASK_SEP 174
PROC_SEP 175
' FCN_SEP 176
separate SEPARATE_STAT 177
' Control Transfer return RETURN_STAT 181
Terminal go-to * GO TO 182
exit* EXIT 183
l null* NULL 184
* Extension eliminated in later translation.
40

Prepared Under Contract No. N60921-90-C-0298

Used by pcrmission of Computer Command and Control Company; April 23, 1992

